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Background

Link prediction task in knowledge graph (KG)

 Given a query (u, q,?), to find the answer v, making (u, q, v) valid
* U:query entity, q:query relation, v:answer entity

* Namely, to predict the latent (unknown) edges, based on the observed (known) edges

query =(u,q,?)
u « (3),q « relation, v «




Background

Two classes of existing works

* semantic models (computation-efficient but parameter-expensive)
* p(u,q,v) is measured by a scoring function, utilizing their representations h,, hq, h,

* structural models (parameter-efficient but computation-expensive)
* learn the sequential order of structures by leveraging the relational paths between 1 and v

* or, directly use the graph structure for reasoning, capturing more complex semantics
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complexity comparison

= The whole graph (G), model (fy), and prediction (Y) are coupled

= f, acts on G to obtain Y of all entities



Research Problem

Graph sampling is an intuitive solution, however, existing sampling methods are not good enough
* non-learnable sampling methods are designed to solve scalability issues of node-level tasks
* e.g., GraphSAGE, FastGCN, and Cluster-GCN
* cannot guarantee the coverage of answer entities fast but not gOOd
* do not perform good on KGs
* learnable sampling methods are bundled with specific GNN models
* e.g., DPMPN,AdaProp, and AStarNet

* the sampling and reasoning in each layer are highly coupled good but not fast
* the computation cost can be still high on large-scale KGs
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=>» how to efficiently and effectively conduct subgraph reasoning on KG?



Outline

* Background
* Method
* Experiments

* Summary



Motivation

Only partial knowledge stored in human
brain is relevant to a question

* extracted by recalling

* and then utilized in the careful thinking procedure

Generating candidates and then ranking
the promising ones are common

* in large-scale recommendation system

* for handling millions even billions of users and items

SYSTEM 1 SYSTEM 2

Intuition & instinct Rational thinking

Unconscious
Fast

Takes effort
Slow
Associative Logical

Automatic pilot Lazy
Indecisive

Source: Daniel Kahneman



One-shot-subgraph link prediction on KGs

Design principle SYSTEM 1 SYSTEM 2

Intuition & instinct Rational thinking

* first to efficiently identify a subgraph (systeml)

* relevant to the given query

Takes effor
Slow
Logical

* then effectively reason on the subgraph (system?2)
* to obtain the precise ranking results dccive

Source: Daniel Kahneman
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two key components
* sampler g efficiently samples a subgraph =» decoupling predictor fg and original graph G

« predictor f effectively reasons on the subgraph "2 only require subgraph G for reasoning



Formal Definition

Definition 1 (One-shot-subgraph Link Prediction on Knowledge Graphs). Instead of directly predict-
ing on the original graph G, the prediction procedure is decoupled to two-fold: (1) one-shot sampling
of a query-dependent subgraph and (2) prediction on this subgraph. The prediction pipeline becomes

g gd)’(u’Q) g If_@)

Y,

(D)

where the sampler g generates only one subgraph G (satisfies |Vs| < |V|, |Es| < |E|) conditioned
on the given query (u, q,?). Based on subgraph G, the predictor fg outputs the final predictions Y .

(a) semantic model
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(b) structural model
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(c) subgraph

(a) semantic

>
Parameter Complexity

(c) one-shot-subgraph model (d) complexity comparison



Implementation | overview

Q: how to build the predictor’s architecture

The th ree ke), StepS Of Original KG G Sampled KG G Reasoning scores ¥
one-shot-subgraph LP are
. — - O

|. generate the sampling

distribution O
2. extract a subgraph with

. . Decoupled Reasoning Paradigm _1 Optimization Objective

top entities and edges o

i G ———=6 7 max Y M), v),
3. inference on the B = —| 9 wameta

() 6 «—
subgraph and get the l , I , ) St Go~Pg @ =argmin > Lag(fo(Ge) ).
final prediction Fast sampling  Slow reasoning (W.q.v)E€¢rain

Q: what kind of sampler is suitable here! Q:how to optimize the sampler and predictor?



Implementation ‘ step |/3 Generate Sampling Distribution

Notice that the answer entity are generally near the query entity.

Hence, we choose the single-source and non-parametric heuristic Personalized
PageRank (PPR) as the indicator for sampling

p(k):the sampling importance of each entity

Specifically, PPR starts propagation from u to evaluate the importance of each neighbor of v and
generates the PageRank scores as the sampling probability that encodes the local neighborhood of the
query entity u. Besides, it can also preserve the locality and connectivity of subgraphs by leveraging

the information from a large neighborhood. Given a query entity u, we obtain the probability p e RIV!
Non-parametric indicator : —a-s+(1—-a)-D1A.p®), (2)
by iteratively updating the scores up to K =100 steps to approximate the converged scores efficiently.
Here, the initial score p(®) = s=1(u) € {0, 1}!V! indicates the query entity u to be explored. The
two-dimensional degree matrix D € RIVI*IV| and adjacency matrix A € {0, 1}!VI*IVI together work
as the transition matrix, wherein A;; =1 means an edge (¢,7, j) € £ and D,; =degree(v;) if i =3
else D;;=0. The damping coefficient o (= 0.85 by default) controls the differentiation degree.



Implementation ‘ step2/3 Extract Subgraph

Step-2. Extract a subgraph{Based on the PPR scores p (Eqn. 2)] the subgraph G = (V.. £, R)
(where R, ="R) is extracted with the most important entities and edges. Denoting thel sampling ratios
of entities and edges as 7+, 7"2 € (0, 1] jhat depend on the query relation g, we sample |Vs|=ry, X 4B
entities and [&| =17 X [E| edges from the full graph G. With the TopK(D, P, K) operation that picks
up top- K elements from candidate D w.r.t. probability P, the entities ), and edges &, are given as

Entity Sampling: TopK(V, P, K|V|),
Edge Sampling: TopK(S, {Pz Do : x,0€ V5, (z,7,0)€E}, K|€|).

3)

' Sampled KG G Reasoning scores Y




Implementation ‘ step3/3 Reason on the Subgraph

Original KG G Sampled KG G5 Reasoning scores ¥

Indicating: h) < 1(o = u),

Propagation: |h'T! |« DROPOUT | ACT(AGG{MESS(R' k! Rh'): (z,r 0) €|&s
p g [0 X T o

DROPOUT(.) ACT(") AGG() MESS|(-) Dimension
(02 05) Identity, Relu, Tanh Max, Mean, Sum Mprum, MNBENet, MREDGNN 16, 32, 64, 128

intra-layer
design

inter-layer  No. layers (L) Repre. initialization Layer-wise shortcut Repre. concatenation ~READOUT(-)
deS|gn {4,6, 8, 10} Binary, Relational True, False True, False Linear, Dot product




Implementation | the full algorithm

Algorithm 1 One-shot-subgraph Link Prediction on Knowledge Graphs

Require: KG g — (V7 R? 8)’ degree matrix D € ]R|V|X|V|’ adjacency matrix A € {0, 1}|V|X|VI,
damping coefficient o, maximun PPR iterations K , query (u, g, ), sampler g4, predictor fp.

1: # Step-1. Generate sampling distribution

2:{mmtialize s < 1(u), p\*’ < 1(u). | = e e e e — - -
3:fork=1...K do - | hyperparameters 1y, 1¢ and L are important |
4 p*tea-s+(1-a)-DTA-p*). ' but how to find the optimal configure? & !
5/ eedfor 7 e e e e e e e e s e e - :
6: # Step-2. Extract a subgraph G,

7:|Vs <~ TopK(V, p, K=r{,x|V]).

8:|Es « TopK(E, {pu'Dv: u,vEVS, (u,m,v)€E}, K=rix|E|).

9: # Step—3. Reason on the subgraph .
10: [initialize representations h( ) 1(o = u).
11:/for/=1...L do
12:  h® < prorouT(acT(ace{MESS (R ALY REDY: (2,1, 0) €ELD)).

13: | end for

14: |return Prediction g, =Readout(th), h&L)) for each entity o € V.




Implementation | optimization

Search Problem to find the optimal configuration ¢p e
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Experiments | main results

Table 1: Empirical results of WN18RR, NELL-995, YAGO3-10 datasets. Best performance is
indicated by the bold face numbers, and the underline means the second best. “—” means unavailable
results. “H@1” and “H@10” are short for Hit@1 and Hit@10 (in percentage), respectively.

oo e dels WNISRR NELL-995 YAGO3-10

yp MRR? H@1t H@10t|MRRT H@11 H@10} |MRR H@1t H@10t
ConvE 0427 392 498 | 0511 446 619 | 0520 450  66.0

Semantic Models QuatE 0480 440 551 | 0533 466 643 | 0379 301 534
RotatE 0477 428 571 | 0.508 448 608 | 0495 402  67.0

MINERVA 0448 413 513 | 0513 413 637 | - - _

DRUM 0486 425 586 | 0532 460 662 | 0531 453 676

RNNLogic 0483 446 558 | 0416 363 478 | 0554 509 622

CompGCN 0479 443 546 | 0463 383 596 | 0480 395 582

Structural Models DPMPN 0482 444 558 | 0513 452 615 | 0553 484  67.9
NBENet 0551 497 66.6 | 0525 451 639 | 0550 479 683

RED-GNN 0533 485 624 | 0543 476 651 | 0559 483 689

one-shot-subgraph | 0.567 514  66.6 | 0.547 485 65.1 | 0.606 54.0 72.1

Table 2: Empirical results of two OGB datasets (Hu et al., 2020) with regard to official leaderboards.
OGBL-BIOKG OGBL-WIKIKG2

type models Test MRRT Valid MRRT #Params) |Test MRR1 Valid MRRT #Params.
TripleRE 0.8348  0.8360 469,630,002| 0.5794  0.6045 500,763,337
AutoSF 0.8309  0.8317 93824000 | 05458 05510 500,227,800
PairRE 0.8164 08172 187,750,000| 05208  0.5423 500,334,800
Semantic Models ~ ComplEx 0.8095  0.8105 187.648000| 04027 03759  1,250,569,500
DistMult 0.8043  0.8055 187.648000| 03729 03506 1.250,569.500
RotatE 07989 07997 187,597.000| 04332 04353 1250435750
TransE 07452 07456  187.648.000| 04256 04272  1.250.569.500

Structural Models[ one-shot-subgraph| 0.8430 0.8435 976,801 | 0.6755 0.7080 6,831,201




Experiments | ablation study

10% entities 10% entities 10% entities
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1.0 - 1.0 1 1.0
5 0.81 2 0.81 S 0.8
(] © ©
o o o
o 0.6 o 0.6 1 @ 0.6 1
& 3 S
5 0.4 5 0.4 5 0.4
3 3 3
O 0.2 O 0.2 O 0.2

O.O- l/ T T T T T 0.0_ T T T T T T O.O T - T T T T T

00 02 04 06 08 1.0 0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
Ratio of sampled entities Ratio of sampled entities Ratio of sampled entities

Table 3: Coverage Ratio of different heuristics. Bold face numbers indicate the best results in column.

WN18RR NELL-995 YAGO3-10
7‘%:0.1 r%=0.2 r%:0.5 r%zO.l 7‘%:0.2 T%:0.5 r%zO.l r%:O.2 r%=0.5

Random Sampling (RAND) | 0.100 0.200 0.500 | 0.100  0.200  0.500 0.100  0.200  0.500
PageRank (PR) 0278  0.407  0.633 0405 0454  0.603 0.340 0432  0.6%4
Random Walk (RW) 0315 0447  0.6%94 0.522  0.552 0.710 0449 0510  0.681

heuristics

firsts 0818 0858 0898 | 0872 0935 0982 | 0728 0760 0848
Personalized PageRank (PPR)| 0.876 0.896 0.929 | 0965 0977 0987 | 0943 0957 0.973




Experiments | efficiency comparison

Table 7: Comparison of efficiency with[an 8-layer predictor]and different r,, rg.

hase 4 4 WNI8RR NELL-995 YAGO3-10
p v € Time Memory Time Memory Time Memory
1.0 1.0 Out of memory Out of memory Out of memory
0.5 0.5 26.3m 20.3GB 1.6h 20.1GB Out of memory
Training 0.2 1.0 12.8m 20.2GB 1.2h 18.5GB Out of memory
0.2 0.2 6.7m 6.4GB 0.6h 8.9GB 2.1h 23.1GB
1.0
0.1
1.0 1.0 7.3m 6.7GB 17.5m 12.8GB 1.6h 15.0GB
0.5 0.5 6.0m 4.3GB 8.3m 4.5GB 1.1h 10.1GB
Inference 0.2 1.0 3.2m 5.8GB 4.2m 12.1GB 0.7h 14.7GB
0.2 0.2 2.8m 1.9GB 3.6m 2.5GB 0.6h 3.7GB
0.1 1.0 2.7m 2.7GB 3.1m 9.4GB 0.4h 9.7GB
0.1 0.1 2.3m 1.7GB 2.9m 1.9GB 0.4h 3.1GB
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Summary

Main contributions

* We propose a new manner of one-shot-subgraph reasoning on KGs to alleviate the scalability
problem of existing methods and achieve efficient as well as adaptable learning on KGs

* We further introduce the automated searching for adaptive configurations in both data space
and model space that benefits from the high efficiency of subgraph reasoning

* Extensive experiments on three common datasets and two large-scale benchmarks show that our
method achieves leading performances with significantly improved effectiveness and efficiency

Extension

* adapt the decoupled reasoning framework to other graph learning tasks
* e.g,sample a local subgraph for node classification or a global subgraph for graph classification

* enhancing the one-shot-subgraph reasoning with instance-wise adaptation
* e.g,sampling a subgraph of suitable scale for each given query



Take home message

‘how to efficiently and effectively conduct subgraph reasoning on KG? (<0

[FAST Sampling] [SLOW Reasoning]
To identify a query-dependent To build an expressive GNN that
subgraph without learning is adaptive to the extracted subgraph
(w,q,?)

J \

g " G > Y
ol
\
| |

Fast sampling  Slow reasoning



Thanks for your listening!
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