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Introduction ‘ background

Graph: a general form
of data expression
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The link prediction task

* based on the observed links

I ntrOd UCtion ‘ bac kground * to predict the latent links between the nodes
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Introduction ‘ graph representation learning

* GNN for link prediction on graphs

encode:n, — h,:R%

L el el e e

,’ mfu’v) — MESS(h! ™!, bt ! eyy) \: h,: node representation
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Y = §(AGG(mf, ), u € N(v))) -
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decode: ¢p,,, = READOUT(h,, h,) - R

optimization: £ = Zeuvegtrain —Yijlog(¢yy) + (1 — Yij)log(l — Ow)



Introduction ‘ problem setup

Observed graph Predictive graph

ideal case
(clean data)

practical case
(with bilateral noise)

noisy observed graph noisy predictive graph



Introduction ‘ problem setup

In practical scenarios,
* the observed graph is often with noisy edges (input noise)
* the predictive graph often contains noisy labels (label noise)
* these two kinds of noise can exist at the same time (by random split)

noisy inputs A node repre. U edge repre. H noisy labels ¥
O f o ©O0 O\Q
o © o o
O O O
GNN N Predlct
_—
encoding decodmg unseen edges
= clean edges noisy edges

We call this kind of noise as the bilateral edge noise

Research problem: how to improve the robustness of GNNs under edge noise &




-
| Definition 3.1 (Bilateral edge noise). Given a clean training data, i.e., observed graph G = (4, X)
| and labels Y € {0, 1} of query edges, the noisy adjacence A is generated by directly adding edge

noise to the original adjacent matrix A while keeping the node features X unchanged. The noisy labels

° Y are similarly generated by adding edge noise to the labels Y . Specifically, given a noise ratio ,, the

I n t ro d u Ct I O n ‘ ro b I e m S etu | noisy edges A’ (A = A+ A’) are generated by flipping the zero element in A as one with the probabil-
P P | ity e,. It satisfies that A’ ® A = O and €, = |nonzero(A)|—|nonzero(A)|/|nonzero(A)|. Similarly, noisy la-

| bels are generated and added to the original labels, where €, = [nonzero(Y)|~|nonzero(Y)|/|nonzero(Y)|.

Inspecting the representation distribution:

L|nk Prediction Performance in AUC E T?blﬁ 1: Meanhivlelllues , _positive samples , _positive samples , _positive samples , _Ppositive samples
. . . . of alignment, which are
with the bilateral edge noise = S ’ - - . . .
: calculated as the L2 dis-
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perform ance drop : e=40%| .695 .689 | normalization followed by the Gaussian kernel density estimation as [35].
: e=60%| 732§ .696 ¢ Both positive and negative edges are expected to be uniformly distributed.

representation collapse

Research problem: how to improve the robustness of GNNs under edge noise &)
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Graph Information Bottleneck (GIB)

A: noisy input graph
Y:noisy edge labels
H: graph representation

defend the input perturbation

However, GIB is intrinsically vulnerable to label noise
since it entirely preserves the label supervision



Robust Graph Information Bottleneck (RGIB)

minGIB £ —I(H;Y), s.t. I(H; A) < ~,

A: noisy input graph
Y: noisy edge labels
H: graph representation

@ =I(4;H|Y) @ =1(47) @ = I(V; H|A)

optimal H

@ =1(4Y|H) (2+@)=I(;H)

Definition 4.1 (Robust Graph Information Bottleneck). Based on the above analysis, we propose a
new learning objective to balance informative signals regarding H, as illustrated in Fig. 5(a), i.e.,

minRGIB £ —I(H;Y), s.t. vy < H(H) <~§, I(H;Y|A) < vy, I(H;A|Y) <7ya. (2)

Specifically, constraints on H(H ) encourage a diverse H to prevent representation collapse (> ;)
and also limit its capacity (< v3;) to avoid over-fitting. Another two MI terms, I(H;Y|A) and

I(H; A|l7), mutually regularize posteriors to mitigate the negative impact of bilateral noise on H.
The complete derivation of RGIB and a further comparison of RGIB and GIB are in Appendix B.2.




Robust Graph Information Bottleneck

minRGIB 2 —I(H;Y), st vy < HH) < ~#, I(H;Y|A) < vy, I(H;A|Y) < 7ya.
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Two practical implementations of RGIB:
* RGIB-SSL explicitly optimizes the representation H with the self-supervised regularization
 RGIB-REP implicitly optimizes H by purifying the noisy A and ¥ with the reparameterization mechanism
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RGIB with SeIf—Superwsed Learnlng (RGIB-SSL)

supervision uniformity alignment

To achieve a tractable approximation of the Ml terms R ;. ~—— Zi\il Rfos-kR"f‘eg

align —
we adopt the contrastive learning technique and

contrast pair of samples, L=\
. P i Runif _zij,mn l
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RGIB with Self-Supervised Learning (RGIB-SSL)

. Proposition 4.2. A higher information entropy H(H) of edge representation H indicates a higher
. uniformity [35] of the representation’s distribution on the unit hypersphere. Proof. See Appendix A.3.

. Proposition 4.3. A lower alignment I(Hy; Hs) indicates a lower I(H; A|Y). Since I(H; AlY) <
I(H;A) < 1/2( (Hl,Hz)—l—I(Al,Az)) 1/2( (Hl,H2)+C) a constrained alignment estimated :
. by I(Hy; Hy) can bound a lower I(H; A|Y)) and I(H; A). Proof. See Appendix A.4. E

Definition 4.1 (Robust Graph Information Bottleneck). Based on the above analysis, we propose a
new learning objective to balance informative signals regarding H, as illustrated in Fig. 5( a) ie.,

minRGIB £ —I(H;Y), s.t. 'yH < H(H) <~} J(H Y|A) < vy, I(H;A|Y) < 'yA 2)

Specifically, constraints on H(H ) encourage a diverse H to prevent representation collapse ( > )
and also limit its capacity (< v};) to avoid over-fitting. Another two MI terms, 1(H;Y|A) and

I(H; f~1|l~’), mutually regularize posteriors to mitigate the negative impact of bilateral noise on H.
The complete derivation of RGIB and a further comparison of RGIB and GIB are in Appendix B.2.



RGIB with Data Reparameterlzatlon (RGIB-REP)

uniformity H(H,), H(H,)

H(H) A '{:_I_{___\: topology constraint ....\abel constraint
— /(5 A1 NP = 1 [ N = T ' e
A I(H,A|Yl H J(H,YM) Y A < - :;::Z:::::::::::g_: Y A - ZA i H - ZY <] Y
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allgnrr_1e—nt_1_(1;1 H,)
RGIB RGIB-SSL RGIB-REP

min RGIB-REP £ — \,I(H; Zy) 4+ al(Za; A M\I(Zy;Y).

supervision topology constraint label constraint

Latent variables Zy and Z, are clean signals extracted from noisy ¥ and A.
* their complementary parts Z,/ and Z s are considered as noise, satisfying Y = Zy + Z,s and A = Z, + Z 1.

I(H; Zy) measures the supervised signals with selected samples Zy

I(Z4; A) and 1(Zy; Y) help to select the clean and task-relevant information from 4 and Y.



RGIB with Data Reparameterization (RGIB-REP)

Proposition 4.4. Given the edge number n of A, the marginal distribution of Z , is Q(Z A)

P(n) [1%,~ Py Za satisfies I(Z4; A) < E[KL(P4(Z4|A)||QZa))] = 3., 1 Pij log 7

(1 — P;;) log 11 Pii — R 4, where T is a constant. The topology constraint T (Z4; A) in Eq. 4 is

bounded by 'R 4, and the label constraint is similarly bounded by Ry . Proof. See Appendix A.5.

Proposition 4.5. The supervision term [(H; Zy) in Eq. 4 can be empirically reduced to the
classification loss, i.e., [ H;Zy) > Ez, z,|108Pw(Zy|Z4)| = —Lecis(fw(Za), Zy), where
L5 is the standard cross-entropy loss. Proof. See Appendix A.6.

Theorem 4.6. Assume the noisy training data Dy, = (A X, Y) contains a potentially clean subset
Dswp =(2%,X,Z3). The Z3, and Z7 are the optimal solutwns of Eq. 4 that Z3, =Y, based
on which a trained GNN predictor fw(-) satisfies fo,(Z%4,X) = Z3 +€. The random error € is
independent of D, and € — 0. Then, for arbitrary As, \a, \y € (0,1], Zpo=2Z% and Zy = Z3;
minimizes the RGIB-REP of Eq. 4. Proof. See Appendix A.7.
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Experiments ‘ Method comparison under bilateral noise

Cora Citeseer Pubmed Facebook Chameleon Squirrel

method 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60%

Standard | .8111 .7419 .6970 |.7864 .7380 .7085 |.8870 .8748 .8641 |.9829 .9520 .9438 | 9616 .9496 .9274 | .9432 .9406 .9386
DropEdge |.8017 .7423 .7303 |.7635 .7393 .7094 | .8711 .8482 .8354 | .9811 .9682 .9473|.9568 .9548 .9407 |.9439 .9377 .9365
NeuralSparse | .8190 .7318 .7293|.7765 .7397 .7148 | .8908 .8733 .8630|.9825 .9638 .9456 |.9599 .9497 .9402 | .9494 .9309 .9297
PTDNet .8047 7559 .7388 |.7795 .7423 .7283 |.8872 .8733 .8623 |.9725 .9674 .9485 |.9607 .9514 .9424 |.9485 .9326 .9304
Co-teaching | .8197 .7479 .7030 |.7533 .7238 .7131|.8943 .8760 .8638 |.9820 .9526 .9480 |.9595 .9516 .9483 |.9461 .9352 .9374
Peerloss |.8185 .7468 .7018|.7423 .7345 .7104 | .8961 .8815 .8566 |.9807 .9536 .9430 |.9543 .9533 .9267 |.9457 .9345 .9286
Jaccard 8143 7498 .7024 | .7473 .7324 .7107 | .8872 .8803 .8512|.9794 .9579 .9428 | .9503 .9538 .9344 |.9443 .9327 .9244
GIB 8198 7485 .7148 | 7509 .7388 .7121 |.8899 .8729 .8544 |.9773 .9608 .9417 | .9554 .9561 .9321|.9472 .9329 .9302
SupCon .8240 7819 .7490 | .7554 .7458 .7299 | .8853 .8718 .8525|.9588 .9508 .9297 | .9561 .9531 .9467 | .9473 .9348 .9301
GRACE 7872 .6940 .6929 | .7632 .7242 .6844 |.8922 .8749 .8588 |.8899 .8865 .8315|.8978 .8987 .8949 |.9394 .9380 .9363

RGIB-REP | .8313 .7966 .7591 |.7875 .7519 .7312|.9017 .8834 .8652|.9832 .9770 .9519 [.9723 .9621 .9519 | .9509 .9455 .9434
RGIB-SSL |.8930 .8554 .8339 |.8694 .8427 .8137 |.9225 .8918 .8697 | .9829 .9711 .9643 | .9655 .9592 .9500 | .9499 .9426 .9425

=>» Robust GIB achieves the best results in all six datasets under the bilateral edge noise



Experiments | Methoc

comparison under unilateral noise

input noise Cora Citeseer Pubmed Facebook Chameleon Squirrel
20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60%
Standard | .8027 .7856 .7490|.8054 .7708 .7583 |.8854 .8759 .8651 |.9819 .9668 .9622 |.9608 .9433 .9368 |.9416 .9395 .9411
DropEdge |.8338 .7826 .7454 |.8025 .7730 .7473 |.8682 .8456 .8376 |.9803 .9685 .9531 |.9567 .9433 .9432|.9426 .9376 .9358
NeuralSparse | .8534 .7794 .7637|.8093 .7809 .7468 | .8931 .8720 .8649 |.9712 .9691 .9583 |.9609 .9540 .9348 [.9469 .9403 .9417
PTDNet .8433 .8214 .7770 | .8119 .7811 .7638 | .8903 .8776 .8609 |.9725 .9668 .9493|.9610 .9457 .9360 |.9469 .9400 .9379
Co-teaching | .8045 .7871 .7530|.8059 .7753 .7668 | .8931 .8792 .8606 |.9712 .9707 .9714 | .9524 .9446 .9447 | 9462 .9425 .9306
Peer loss 8051 .7866 .7517 | .8106 .7767 .7653 |.8917 .8811 .8643|.9758 .9703 .9622|.9558 .9482 .9412 |.9362 .9386 .9336
Jaccard .8200 .7838 .7617 | .8176 .7776 .7725 |.8987 .8764 .8639 |.9784 .9702 .9638 | .9507 .9436 .9364 | .9388 .9345 .9240
GIB .8002 .8099 .7741|.8070 .7717 .7798 | .8932 .8808 .8618 |.9796 .9647 .9650|.9605 .9521 .9416 |.9390 .9406 .9397
SupCon .8349 8301 .8025|.8076 .7767 .7655 |.8867 .8739 .8558|.9647 .9517 .9401 | .9606 .9536 .9468 |.9372 .9343 .9305
____GRACE 7877 7107 6975 1.7615 7151 6830 |.8810 8795 .8593 |.9015 8833 .8395 [.8994 9007 .8964 [.9392 9378 .9363
RGIB-REP |.8624 .8313 .8158 |.8299 .7996 .7771 |.9008 .8822 .8687 |.9833 .9723 .9682 | .9705 .9604 .9480 |.9495 .9432 .9405
RGIB-SSL |.9024 .8577 .8421 |.8747 .8461 .8245|.9126 .8889 .8693|.9821 .9707 .9668 | .9658 .9570 .9486 | .9479 .9429 .9429

label noise Cora Citeseer Pubmed Facebook Chameleon Squirrel
20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60% | 20% 40% 60%
Standard | .8281 .8054 .8060 |.7965 .7850 .7659|.9030 .9039 .9070 |.9882 .9880 .9886 |.9686 .9580 .9362 (.9720 .9720 .9710
DropEdge |.8363 .8273 .8148 |.7937 .7853 .7632|.9313 .9201 .9240 |.9673 .9771 .9776 | .9580 .9579 .9578 | .9608 .9603 .9698
NeuralSparse | .8524 .8246 .8211|.7968 .7921 .7752|.9272 .9136 .9089 |.9781 .9781 .9784 |.9583 .9583 .9571 |.9633 .9626 .9625
PTDNet .8460 .8214 .8138 |.7968 .7765 .7622 |.9219 .9099 .9093 | .9879 .9880 .9783|.9585 .9576 .9665 |.9633 .9623 .9626
Co-teaching | .8446 .8209 .8157 (.7974 .7877 .7913 | .9315 .9291 .9319|.9762 .9797 .9638 | .9642 .9650 .9533|.9675 .9641 .9655
Peer loss .8325 .8036 .8069 |.7991 .7990 .7751|.9126 .9101 .9210|.9769 .9750 .9734 | 9621 .9501 .9569 | .9636 .9694 .9696
Jaccard .8289 .8064 .8148 |.8061 .7887 .7689 |.9098 .9135 .9096 | .9702 .9725 .9758 |.9603 .9659 .9557|.9529 .9512 .9501
GIB .8337 .8137 .8157|.7986 .7852 .7649 | 9037 .9114 9064 | .9742 .9703 .9771|.9651 .9582 .9489 |.9641 .9628 .9601
SupCon 8491 .8275 .8256|.8024 .7983 .7807 [ .9131 .9108 .9162 | .9647 .9567 .9553|.9584 .9580 .9477|.9516 .9595 .9511
GRACE .8531 .8237 .8193|.7909 .7630 .7737 |.9234 .9252 .9255|.8913 .8972 .8887|.9053 .9074 .9075|.9171 .9174 .9166
RGIB-REP |.8554 .8318 .8297 (.8083 .7846 .7945(.9357 .9343 .9332|.9884 .9883 .9889 | .9785 .9797 .9785|.9735 .9733 .9737
RGIB-SSL |.9314 .9224 .9241 | .9204 .9218 .9250 | .9594 .9604 .9613 | .9857 .9881 .9857 |.9730 .9752 .9744 | .9727 9729 .9726

=>» As for the unilateral noise settings, our method still consistently surpasses all the baselines by a large margin




Experiments ‘ The learned representations

. positive samples . positive samples

. positive samples

Table 5: Comparison of alignment.
Here, std. 1s short for standard train-
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ing, and SSL/REP are short for RGIB-  * ‘ ‘ ‘

SSL/RGIB-REP, respectively.
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dataset Cora Citeseer Cnegativesamplel”  ‘negativesampled” ‘negative samples”
method | std. REP SSL|std. REP SSL . .

clean |.616.524 .475|.445 439 418 : ‘ ' ' ;
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Figure 6: Uniformity distribution on Citeseer with € =40%.

=>» The graph representation has obvious improvement in distribution



Experiments | Ablation study

0.

Table 6: Comparison on different schedulers.
SSL/REP are short for RGIB-SSL/RGIB-REP.
Experiments are performed with a 4-layer
GAT and ¢ =40% mixed edge noise.

dataset Cora Citeseer Pubmed
method | SSL REP | SSL REP | SSL REP

constant|.8398 .7927|.8227 .7742|.8596 .8416
linear(-) |.8427 .7653|.8167 .7559(.8645 .8239
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Figure 7: Grid search of hyper-parameter with RGIB-
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Figure 8: Learning curves of RGIB-SSL and RGIB-REP with £ =40% bilateral noise.
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Table 8: Ablation study for RGIB-SSL and RGIB-REP with a 4-layer SAGE. Here, ¢ =60% indicates
the 60% bilateral noise, while the €,/¢, represent ratios of unilateral input/label noise.

sin(-) |.8436 .7924|.8132 .7680(.8637 .8275 SSL (left) and RGIB-REP (right) on Cora dataset with
cos(-) |.8334 .7833|.8088 .7647|.8579 .8372 bilateral noise € = 40%. As can be seen, neither too
exp(-) |.8381 .7815].8085 .7569|.8617 8177 I Jarge nor too small value can bring a good solution.
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Table 7: Method comparison with a 4-layer GCN trained on the clean data.
method |  Cora Citeseer Pubmed Facebook Chameleon Squirrel
Standard .8686 8317 9178 .9870 9788 9725
DropEdge .8684 .8344 9344 .9869 9700 .9629
NeuralSparse 8715 .8405 9366 .9865 9803 .9635
PTDNet 8577 .8398 9315 .9868 .9696 .9640
Co-teaching .8684 .8387 9192 9771 9698 9626
Peer loss .8313 7742 9085 .8951 9374 9422
Jaccard .8413 .8005 .8831 9792 9703 9610
GIB .8582 .8327 9019 9691 9628 .9635
SupCon .8529 .8003 9131 9692 9717 9619
GRACE .8329 .8236 9358 .8953 .8999 9165
RGIB-REP .8758 .8415 9408 9875 9792 .9680
RGIB-SSL 9260 9148 9593 .9845 9740 .9646

variant Cora Chameleon
e=60% €q =60% €y =60% e=60% €a =60% €y =60%
RGIB-SSL (full) .8596 .8730 .8994 9663 9758 9762
- w/o hybrid augmentation 8150 (5.1%]) .8604 (1.4%]) .8757 (2.6%]) | 9528 (1.3%]) .9746 (0.1%]) .9695 (0.6%.])
- w/o self-adversarial 8410 (2.1%)) .8705(0.2%]) .8927 (0.7%) | .9655 (0.1%]) .9732 (0.2%]) .9746 (0.1%)

- w/o supervision (As =0)
- w/o alignment (A, =0)

7480 (12.9%1)

.8194 (4.6%.)

.7810 (10.5%1.)

.8510 (2.5%1)

7820 (13.0%1.)
.8461 (5.9%.)

.8626 (10.7%1.)
9613 (0.5%.)

8628 (11.5%1)

9749 (0.1%.)

8512 (12.8%1)

9722 (0.4%.)

- w/o uniformity (A, = 0) 8355 (2.8%)) 8621 (12%)) .8878 (1.3%)) | 9652 (0.1%)) 9710 (0.4%) 9751 (0.1%.)
RGIB-REP (full) 7611 8487 8095 9567 9706 9676

- wio edge selection (Z4 = A) | 7515(12%)) 8199 (3.3%)) .7890 (2.5%)) | .9554(0.1%) 9704 (0.1%)) .9661 (0.1%.)

- w/o label selection (Zy = Y) | .7533 (1.0%)) .8373 (1.3%)) .7847 (3.0%)) | .9484(0.8%)) .9666(0.4%)) .9594 (0.8%)

- wlo topology constraint (A4 = 0) | 7355 (3.3%)) 7699 (9.2%)) .7969 (1.5%)) | .9503(0.6%1) 9658 (0.4%1) .9635 (0.4%.)

- w/o label constraint (\y =0) | 7381 (3.0%)) .8106 (4.4%)) .8032(0.7%)) | .9443(1.2%)) 9665 (0.4%)) .9669 (0.1%.)

More experiments can be found in our paper



Outline

* Summary



Take home messages

In this work, we study the problem of link prediction with the Bilateral Edge Noise.

We propose the Robust Graph Information Bottleneck (RGIB) principle, aiming to extract reliable
signals via decoupling and balancing the mutual information among inputs, labels, and representation.

Regarding the instantiation of RGIB, the self-supervised learning technique and data reparametrization
mechanism are utilized to establish the RGIB-SSL and RGIB-REP, respectively.

Empirical studies verify the denoising effect of the proposed RGIB under different noisy scenarios.



Future directions

* Learning with Graphs
« explicit with LLMs': LLM-enhanced graph learning, e.g., GraphText on TAG
* implicit with LLMs?: graph prompts for in-context learning, e.g., PRODIGY

* Reasoning with LLMs

« explicit with Graphs3: mount with external graphs, e.g., KG-enhanced reasoning
* implicit with Graphs*: progressively reasoning, e.g., COT / TOT / GOT

LLMs
We are now collecting and summarizing related works,

and find many works are on the way.

It will be released soon :)

Graphs
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Research scope

The idea still not works (yet)
What FM cannot do well e.g., algorithmic/complex reasoning

0D What FM can do well e.g., multi-agent collaboration,
X2 . ¢ g g
<«© ‘o-\\\"*‘ but underexplored predicting future events
>
What FM can do well e.g., zero/few-shot with in-context learning,
o & &
The idea works &-\(\"o A and well-known traditional supervised learning tasks
LT D% A \ e
o°
. T e?
. 0&',\0% e.g., jailbreak, privacy leakage
CO(OQ

The idea doesn’t work
'FM: Foundation Models, including LLM,VLM, etc.



Thanks for your listening!

Zhanke Zhou
Email: cszkzhou@comp.hkbu.edu.hk
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