Learning from Counterfactual Links for Link Prediction

Presenter: Zhanke Zhou 2023 / 02 / 09

About the paper

Learning from Counterfactual Links for Link Prediction

- affiliation: Department of Computer Science and Engineering, University of Notre Dame
- authors: Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, Meng Jiang
- conference: ICML 2022
- paper: https://arxiv.org/pdf/2106.02172.pdf
- official codes: https://github.com/DM2-ND/CFLP
- official slides: <u>https://icml.cc/media/icml-2022/Slides/16774.pdf</u>

Outline

- Background
- Methods
- Experiment
- Summary

Background | Graph Learning

- Given: a graph with adjacency matrix $A \in \{0,1\}^{N \times N}$ and raw node features $X \in \mathbb{R}^{N \times D}$
- Learn: low-dimensional node representations $Z \in \mathbb{R}^{N \times D}$, which can be used for the prediction of link existences

• i.e.,
$$f_{GNN}(A, X) = Z \rightarrow \widehat{A} \leftrightarrow A_{GT}$$

A potential problem

$$f_{GNN}(\boldsymbol{A},\boldsymbol{X}) = \boldsymbol{Z} \to \widehat{\boldsymbol{A}}$$

- existing methods that learn from association
 - may not capture essential factors to predict missing links
- the causal relationship between graph structure and link existence
 - was largely *ignored* in previous work

A potential problem

- existing methods that learn from association
 - may not capture essential factors to predict missing links
- the causal relationship between graph structure and link existence
 was largely ignored in previous work

an example

Alice and Adam live in the same neighborhood and they are close friends

The association between *neighborhood belonging* and *friendship* could be too strong to discover the *essential factors* of friendship

- such as common interests or family relationships (i.e., intrinsic properties)
- such factors may be the cause of them living in the same neighborhood

The counterfactual question:

Would Alice and Adam still be friends if they were not living in the same neighborhood?

It is a good question, but how to find the answer, i.e., the counterfactual link?

Alice

Causal modeling

Treatment Effect Estimation Adam

10

A counterfactual question

Would Alice and Adam still be friends if they were not living in the same neighborhood?

It is a good question, but how to find the answer, i.e., the counterfactual link?

The **binary case** is called the **treatment (T)** ^[1]

- (T=I) living in the same neighborhood
- (T=0) not living in the same neighborhood

[1]: here, the **treatment** can be seen as the **topological context** of two nodes

A counterfactual question

Would Alice and Adam still be friends if they were not living in the same neighborhood?

It is a good question, but how to find the answer, i.e., the counterfactual link?

The binary case is called the **treatment (T)**

- (T=1) living in the same neighborhood
- (T=0) not living in the same neighborhood

Alice Adam

But, in reality, we can only observe the outcome under one particular **treatment**. **So, how can we find the counterfactual link? (**

e.g., effects of a vaccine

But, in reality, we can only observe the outcome under one particular **treatment**. **So, how can we find the counterfactual link? (**

➔ Solution:

find **the most similar** node pair with **a different treatment** as the counterfactual link

(Alice, Adam) Most similar with a different treatment (Helen, Bob) Factual link: 1 Counterfactual link: 1

But, in reality, we can only observe the outcome under one particular **treatment**. **So, how can we find the counterfactual link? (**

➔ Solution:

find **the most similar** node pair with **a different treatment** as the counterfactual link

(Alice, Adam) Most similar with a different treatment (Helen, Bob)

Factual link: 1

Counterfactual link: 1

core idea: generate counterfactual links to help the model learn better node representations for link prediction.

→ core idea: generate counterfactual links to help the model learn better node representations for link prediction.

Logic behind the idea

- Generally, the *question* can be described as "would the link exist or not if the graph structure became different from observation?"
- If a model can learn the causal relationship by answering this question, it will improve the prediction with such *knowledge*.

Background | Experiments

	CORA	CITESEER	PubMed	Facebook	OGB-ddi
Node2Vec	49.96±2.51	47.78±1.72	39.19±1.02	24.24 ± 3.02	23.26±2.09
MVGRL	$19.53 {\pm} 2.64$	$14.07 {\pm} 0.79$	$14.19 {\pm} 0.85$	$14.43 {\pm} 0.33$	$10.02{\pm}1.01$
VGAE	45.91 ± 3.38	44.04 ± 4.86	23.73 ± 1.61	$37.01 {\pm} 0.63$	11.71 ± 1.96
SEAL	51.35 ± 2.26	40.90 ± 3.68	28.45 ± 3.81	$40.89 {\pm} 5.70$	30.56 ± 3.86
LGLP	<u>62.98</u> ±0.56	<u>57.43</u> ±3.71	_	$37.86{\pm}2.13$	_
GCN	49.06 ± 1.72	55.56 ± 1.32	$21.84{\pm}3.87$	53.89±2.14	$37.07 {\pm} 5.07$
GSAGE	$53.54{\pm}2.96$	$53.67 {\pm} 2.94$	<u>39.13</u> ±4.41	45.51 ± 3.22	$53.90 {\pm} 4.74$
JKNet	48.21 ± 3.86	$55.60{\pm}2.17$	$\overline{25.64} \pm 4.11$	$52.25 {\pm} 1.48$	60.56 ± 8.69
Our proposed CFLF	with different	graph encoders			
CFLP w/ GCN	60.34 ± 2.33	59.45 ± 2.30	34.12 ± 2.72	$53.95 {\pm} 2.29$	52.51 ± 1.09
CFLP w/ GSAGE	57.33 ± 1.73	$53.05 {\pm} 2.07$	43.07 ± 2.36	$47.28 {\pm} 3.00$	75.49 ± 4.33
CFLP w/ JKNet	65.57 ±1.05	68.09 ±1.49	44.90 ±2.00	55.22 ±1.29	86.08 ±1.98

OGB

Get Started Updates Large-Scale Challenge - Datasets - Leaderboards - Paper Team Github

Leaderboard for ogbl-ddi

The Hits@20 score on the test and validation sets. The higher, the better.

Package: >=1.2.1

Rank	Method	Ext. data	Test Hits@20	Validation Hits@20	Contact	References	#Params	Hardware	Date
1	PLNLP	No	0.9088 ± 0.0313	0.8242 ± 0.0253	Zhitao Wang (WeChat@Tencent)	Paper, Code	3,497,473	Tesla-P40(24GB GPU)	Dec 7, 2021
2	GraphSAGE + Edge Attr	No	0.8781 ± 0.0474	0.8044 ± 0.0404	Jing Yang	Paper, Code	3,761,665	Tesla V100 (32GB)	Aug 9, 2021
3	CFLP (w/ JKNet)	No	0.8608 ± 0.0198	0.8405 ± 0.0284	Tong Zhao	Paper, Code	837,635	GeForce RTX 2080 Ti (11GB GPU)	Nov 17, 2021

Good empirical results

Outline

- Background
- Methods
 - QI: what are the counterfactual links?
 - Q2: how to generate the counterfactual links?
 - Q3: how to utilize the counterfactual links?
- Experiment
- Summary

Method | formulation

3 key factors of a counterfactual question

- node representations (Z)
 - information of node pairs
- treatment (T)
 - global graph structural properties
- outcome (Y)
 - link existence

(a) Causal modeling (not the target of our work but related to the idea we propose): Given \mathbf{Z} and observed outcomes, find treatment effect of T on Y.

(b) Graph learning with causal model (the proposed idea): leverage the estimated ITE $(A_{i,j}|T_{i,j})$ to improve the learning of \mathbf{z}_i and \mathbf{z}_j .

Method | formulation

3 key factors of a counterfactual question

- node representations (Z)
 - information of node pairs
- treatment (T)
 - global graph structural properties
- outcome (Y)
 - link existence

About the treatment (T)

- global graph structural properties
 - id of community/cluster/neighborhood
 - or K-core / Louvain / spectral clustering
 - $T_{ij} = 1$ if $c(v_i) = c(v_j)$ else $T_{ij} = 0$

(a) Causal modeling (not the target of our work but related to the idea we propose): Given \mathbf{Z} and observed outcomes, find treatment effect of T on Y.

(b) Graph learning with causal model (the proposed idea): leverage the estimated ITE $(A_{i,j}|T_{i,j})$ to improve the learning of \mathbf{z}_i and \mathbf{z}_j .

- $T_{ij} = 1$ means node i and node j
- are structurally consistent in one aspect

Method | formulation

3 key factors of a counterfactual question

- node representations (Z)
 - information of node pairs
- treatment (T)
 - global graph structural properties
- outcome (Y)
 - link existence

About the treatment (T)

- global graph structural properties
 - id of community/cluster/neighborhood
 - or K-core / Louvain / spectral clustering
 - $T_{ij} = 1$ if $c(v_i) = c(v_j)$ else $T_{ij} = 0$
- $T_{ij} = 1$ means node i and node j
- are structurally consistent in one aspect

Q1: what are the counterfactual links? that is, the link A_{ij}^{CF} that satisfies $T_{ij}^{CF} = 1 - T_{ij}$

when $T_{ij}^{CF} = 1 - T_{ij}$, is the link A_{ij}^{CF} exist?

(a) Causal modeling (not the target of our work but related to the idea we propose): Given \mathbf{Z} and observed outcomes, find treatment effect of T on Y.

(b) Graph learning with causal model (the proposed idea): leverage the estimated ITE $(A_{i,j}|T_{i,j})$ to improve the learning of \mathbf{z}_i and \mathbf{z}_j .

• Q2: How to generate the counterfactual links?

To find the counterfactual link (v_a, v_b) of the given link (v_i, v_j)

$$(v_a, v_b) = \underset{v_a, v_b \in \mathcal{V}}{\arg\min} \{ h((v_i, v_j), (v_a, v_b)) \mid T_{a,b} = 1 - T_{i,j} \},$$
(2)

where $h(\cdot, \cdot)$ is a metric of measuring the distance between a two edges

• Q2: How to generate the counterfactual links?

$$\begin{aligned} (v_{a}, v_{b}) &= \underset{v_{a}, v_{b} \in \mathcal{V}}{\arg\min} \{h((v_{i}, v_{j}), (v_{a}, v_{b})) \mid T_{a,b} = 1 - T_{i,j}\}, \\ & \downarrow \end{aligned}$$
(2)
$$(v_{a}, v_{b}) &= \underset{v_{a}, v_{b} \in \mathcal{V}}{\arg\min} \{d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{a}) + d(\tilde{\mathbf{x}}_{j}, \tilde{\mathbf{x}}_{b}) \mid \end{aligned}$$
(3)
$$T_{a,b} &= 1 - T_{i,j}, d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{a}) + d(\tilde{\mathbf{x}}_{j}, \tilde{\mathbf{x}}_{b}) < 2\gamma\}, \end{aligned}$$

• Q2: How to generate the counterfactual links?

$$(v_a, v_b) = \underset{v_a, v_b \in \mathcal{V}}{\arg\min} \{ d(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_a) + d(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_b) \mid$$
(3)
$$T_{a,b} = 1 - T_{i,j}, d(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_a) + d(\tilde{\mathbf{x}}_j, \tilde{\mathbf{x}}_b) < 2\gamma \},$$

$$T_{i,j}^{CF}, A_{i,j}^{CF} = \begin{cases} 1 - T_{i,j}, A_{a,b} & \text{, if } \exists (v_a, v_b) \in \mathcal{V} \times \mathcal{V} \\ \text{satisfies Eq. (3);} \\ T_{i,j}, A_{i,j} & \text{, otherwise.} \end{cases}$$

• Q2: How to generate the counterfactual links?

$$(v_{a}, v_{b}) = \underset{v_{a}, v_{b} \in \mathcal{V}}{\arg\min\{d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{a}) + d(\tilde{\mathbf{x}}_{j}, \tilde{\mathbf{x}}_{b}) \mid}$$
(3)

$$T_{a,b} = 1 - T_{i,j}, d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{a}) + d(\tilde{\mathbf{x}}_{j}, \tilde{\mathbf{x}}_{b}) < 2\gamma\},$$

$$T_{i,j}^{CF}, A_{i,j}^{CF} = \begin{cases} 1 - T_{i,j}, A_{a,b} &, \text{ if } \exists (v_{a}, v_{b}) \in \mathcal{V} \times \mathcal{V} \\ & \text{ satisfies Eq. (3);} \\ T_{i,j}, A_{i,j} &, \text{ otherwise.} \end{cases}$$

So far, we obtain A_{ij}^{CF} , T_{ij}^{CF} from A_{ij} , T_{ij} . But, how to utilize the A_{ij}^{CF} , T_{ij}^{CF} ?

Outline

- Background
- Methods
 - QI: what are the counterfactual links?
 - Q2: how to generate the counterfactual links?
 - Q3: how to utilize the counterfactual links?
- Experiment
- Summary

- Learning from Counterfactual Links
 - train a GNN to predict factual links and counterfactual links
 - given the corresponding *treatments*

- Learning from Counterfactual Links
 - train a GNN to predict factual links and counterfactual links
 - given the corresponding *treatments*

 $\widehat{\mathbf{A}} = g(\mathbf{Z}, \mathbf{T}), \text{ s.t. } \widehat{A}_{i,j} = \text{MLP}([\mathbf{z}_i \odot \mathbf{z}_j, T_{i,j}]), \quad (6)$ $\widehat{\mathbf{A}}^{CF} = g(\mathbf{Z}, \mathbf{T}^{CF}), \text{ s.t. } \widehat{A}_{i,j}^{CF} = \text{MLP}([\mathbf{z}_i \odot \mathbf{z}_j, T_{i,j}^{CF}]), \quad (7)$

Learning from Counterfactual Links
optimization

$$\mathcal{L}_{F} = \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i,j} \cdot \log \widehat{A}_{i,j}$$
(8)
+ $(1 - A_{i,j}) \cdot \log(1 - \widehat{A}_{i,j}),$
$$\mathcal{L}_{CF} = \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i,j}^{CF} \cdot \log \widehat{A}_{i,j}^{CF}$$
(9)
+ $(1 - A_{i,j}^{CF}) \cdot \log(1 - \widehat{A}_{i,j}^{CF}).$

 $\mathcal{L}_{disc} = \operatorname{disc}(\hat{P}_{f}^{F}, \hat{P}_{f}^{CF}), \text{ where } \operatorname{disc}(P, Q) = ||P - Q||_{F},$ (10)

 $\mathcal{L} = \mathcal{L}_F + \alpha \cdot \mathcal{L}_{CF} + \beta \cdot \mathcal{L}_{disc}, \qquad (11)$

I. collect data
2. train
3. fine-tune
4. test

Outline

- Background
- Methods
 - QI: what are the counterfactual links?
 - Q2: how to generate the counterfactual links?
 - Q3: how to utilize the counterfactual links?
- Experiment
 - Q4: how helpful are the counterfactual links?
 - Q5: how to justify the effectiveness of counterfactual links?
- Summary

Table 1. Statistics of datasets used in the experiments.							
Dataset	CORA	CITESEER	PubMed	Facebook	OGB-DDI		
# nodes	2,708	3,327	19,717	4,039	4,267		
# links	5,278	4,552	44,324	88,234	1,334,889		
# validation node pairs	1,054	910	8,864	17,646	235,371		
# test node pairs 2,110 1,820 17,728 35,292 229,088							

Link prediction performances measured by *Hits@20*

	CORA	CITESEER	PubMed	Facebook	OGB-DDI
Node2Vec	49.96±2.51	47.78±1.72	39.19±1.02	24.24 ± 3.02	23.26±2.09
MVGRL	$19.53 {\pm} 2.64$	$14.07 {\pm} 0.79$	$14.19 {\pm} 0.85$	14.43 ± 0.33	10.02 ± 1.01
VGAE	45.91 ± 3.38	44.04 ± 4.86	23.73 ± 1.61	$37.01 {\pm} 0.63$	11.71 ± 1.96
SEAL	51.35 ± 2.26	40.90 ± 3.68	28.45 ± 3.81	$40.89 {\pm} 5.70$	30.56 ± 3.86
LGLP	62.98 ± 0.56	<u>57.43</u> ±3.71	-	37.86 ± 2.13	-
GCN	49.06 ± 1.72	55.56 ± 1.32	$21.84{\pm}3.87$	53.89±2.14	$37.07 {\pm} 5.07$
GSAGE	$53.54 {\pm} 2.96$	$53.67 {\pm} 2.94$	<u>39.13</u> ±4.41	45.51±3.22	$53.90 {\pm} 4.74$
JKNet	48.21 ± 3.86	$55.60{\pm}2.17$	$25.64{\pm}4.11$	52.25 ± 1.48	60.56 ± 8.69
Our proposed CFLP	with different	graph encoders			
CFLP w/ GCN	$60.34 {\pm} 2.33$	59.45 ± 2.30	34.12 ± 2.72	$53.95 {\pm} 2.29$	52.51 ± 1.09
CFLP w/ GSAGE	57.33 ± 1.73	$53.05 {\pm} 2.07$	43.07 ± 2.36	$47.28 {\pm} 3.00$	75.49 ± 4.33
CFLP w/ JKNet	65.57 ±1.05	68.09 ±1.49	44.90 ±2.00	55.22 ±1.29	86.08±1.98

Consistent improvement against baselines.

OGB

Get Started Updates Large-Scale Challenge - Datasets - Leaderboards - Paper Team Github

Leaderboard for ogbl-ddi

The Hits@20 score on the test and validation sets. The higher, the better.

Package: >=1.2.1

Rank	Method	Ext. data	Test Hits@20	Validation Hits@20	Contact	References	#Params	Hardware	Date
1	PLNLP	No	0.9088 ± 0.0313	0.8242 ± 0.0253	Zhitao Wang (WeChat@Tencent)	Paper, Code	3,497,473	Tesla-P40(24GB GPU)	Dec 7, 2021
2	GraphSAGE + Edge Attr	No	0.8781 ± 0.0474	0.8044 ± 0.0404	Jing Yang	Paper, Code	3,761,665	Tesla V100 (32GB)	Aug 9, 2021
3	CFLP (w/ JKNet)	No	0.8608 ± 0.0198	0.8405 ± 0.0284	Tong Zhao	Paper, Code	837,635	GeForce RTX 2080 Ti (11GB GPU)	Nov 17, 2021

Experiments Q5: how to justify the effectiveness of counterfactual links?

when $T_{ij} = 1$ or $T_{ij} = 0$, is the link A_{ij} still exist?

(a) Causal modeling (not the target of our work but related to the idea we propose): Given \mathbf{Z} and observed outcomes, find treatment effect of T on Y.

(b) Graph learning with causal model (the proposed idea): leverage the estimated ITE $(A_{i,j}|T_{i,j})$ to improve the learning of \mathbf{z}_i and \mathbf{z}_j .

The *individual treatment effect (ITE)* can be used to quantify the effect of treatment on the outcome.

$$\text{ITE}(\mathbf{z}) = g(\mathbf{z}, 1) - g(\mathbf{z}, 0)$$

$$ITE_{(v_i, v_j)} = g((\mathbf{z}_i, \mathbf{z}_j), 1) - g((\mathbf{z}_i, \mathbf{z}_j), 0)$$
$$T_{ij} = 1 \qquad T_{ij} = 0$$

The *averaged treatment effect (ATE)* is the expectation of ITE

$$ATE = \mathbb{E}_{\mathbf{z} \sim \mathbf{Z}} ITE(\mathbf{z})$$

Table 4. Results of CFLP with different treatments on CORA. (sorted by Hits@20)

	Hits@20	$\widehat{\text{ATE}}_{obs}$	$\widehat{\operatorname{ATE}}_{est}$
K-core	65.6±1.1	0.002	$0.013 {\pm} 0.003$
SBM	64.2 ± 1.1	0.006	$0.023 {\pm} 0.015$
CommN	62.3 ± 1.6	0.007	$0.053 {\pm} 0.021$
PropC	61.7 ± 1.4	0.037	$0.059 {\pm} 0.065$
Ward	61.2 ± 2.3	0.001	$0.033 {\pm} 0.012$
SpecC	59.3 ± 2.8	0.002	$0.033 {\pm} 0.011$
Louvain	57.6 ± 1.8	0.025	$0.138 {\pm} 0.091$
Katz	56.6 ± 3.4	0.740	$0.802{\pm}0.041$

Table 5. Results of CFLP with different treatments on CITESEER. (sorted by Hits@20)

	Hits@20	$\widehat{\text{ATE}}_{obs}$	$\widehat{\text{ATE}}_{est}$
SBM	71.6 ± 1.9	0.004	0.005 ± 0.001
K-core	68.1 ± 1.5	0.002	$0.010 {\pm} 0.002$
Ward	67.0 ± 1.7	0.003	$0.037 {\pm} 0.009$
PropC	64.6 ± 3.6	0.141	0.232 ± 0.113
Louvain	63.3 ± 2.5	0.126	$0.151 {\pm} 0.078$
SpecC	59.9 ± 1.3	0.009	$0.166 {\pm} 0.034$
Katz	57.3 ± 0.5	0.245	$0.224{\pm}0.037$
CommN	$56.8{\pm}4.9$	0.678	$0.195{\pm}0.034$

$$\widehat{\text{ATE}}_{obs} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \{ \mathbf{T} \odot (\mathbf{A} - \mathbf{A}^{CF}) + (\mathbf{1}_{N \times N} - \mathbf{T}) \odot (\mathbf{A}^{CF} - \mathbf{A}) \}_{i,j}$$

$$\begin{split} \widehat{\text{ATE}}_{est} = & \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \{ \mathbf{T} \odot (\widehat{\mathbf{A}} - \widehat{\mathbf{A}}^{CF}) \\ &+ (\mathbf{1}_{N \times N} - \mathbf{T}) \odot (\widehat{\mathbf{A}}^{CF} - \widehat{\mathbf{A}}) \}_{i,j} \end{split}$$

Outline

- Background
- Methods
- Experiment
- Summary

Contributions

- I. the *first* work that aims at improving link prediction by *causal inference*
- 2. introduce CFLP that trains GNNs to **predict** both factual and counterfactual links
- 3. leverage *causal relationship* to *enhance* link prediction
- 4. CFLP outperforms competitive baselines on several benchmark datasets

