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Background | Link Prediction

• Given: a graph with adjacency
matrix 𝑨 ∈ 0,1 !×! and raw 
node features 𝑿 ∈ ℝ!×#

• Learn: low-dimensional node 
representations 𝒁 ∈ ℝ!×# , which 
can be used for the prediction of 
link existences

• i.e., 𝑓$!! 𝑨,𝑿 = 𝒁 → ,𝑨↔ 𝑨$%
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A potential problem
• existing methods that learn from association
• may not capture essential factors to predict missing links

• the causal relationship between graph structure and link existence
• was largely ignored in previous work
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Background | Link Prediction
𝑓!"" 𝑨,𝑿 = 𝒁 → (𝑨

“dog” class



A potential problem
• existing methods that learn from association
• may not capture essential factors to predict missing links

• the causal relationship between graph structure and link existence
• was largely ignored in previous work
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Background | Link Prediction

Alice and Adam live in the same neighborhood and they are close friends

The association between neighborhood belonging and friendship could be 
too strong to discover the essential factors of friendship 
• such as common interests or family relationships (i.e., intrinsic properties)
• such factors may be the cause of them living in the same neighborhood

an example



Background | Link Prediction

The counterfactual question:
Would Alice and Adam still be friends if they 
were not living in the same neighborhood?
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It is a good question, but how to find
the answer, i.e., the counterfactual link?🤔

?
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A counterfactual question
Would Alice and Adam still be friends if they 
were not living in the same neighborhood?
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It is a good question, but how to find
the answer, i.e., the counterfactual link?

?

The binary case is called the treatment (T) [1]
• (T=1) living in the same neighborhood
• (T=0) not living in the same neighborhood

Causal modeling

[1]: here, the treatment can be seen as
the topological context of two nodes
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A counterfactual question
Would Alice and Adam still be friends if they 
were not living in the same neighborhood?
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It is a good question, but how to find
the answer, i.e., the counterfactual link?

?

But, in reality, we can only observe the outcome under one particular treatment.
So, how can we find the counterfactual link?🤔

The binary case is called the treatment (T)
• (T=1) living in the same neighborhood
• (T=0) not living in the same neighborhood

e.g., effects of a vaccine



Background | Link Prediction
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But, in reality, we can only observe the outcome under one particular treatment.
So, how can we find the counterfactual link?🤔

è Solution:
find the most similar node pair with a different treatment
as the counterfactual link
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But, in reality, we can only observe the outcome under one particular treatment.
So, how can we find the counterfactual link?🤔

è Solution:
find the most similar node pair with a different treatment
as the counterfactual link

è core idea: generate counterfactual links to help the 
model learn better node representations for link prediction.



Background | Link Prediction
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Logic behind the idea
• Generally, the question can be described as “would the link exist or 

not if the graph structure became different from observation?”
• If a model can learn the causal relationship by answering this 

question, it will improve the prediction with such knowledge. 

è core idea: generate counterfactual links to help the 
model learn better node representations for link prediction.
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Good empirical results
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3 key factors of a counterfactual question
• node representations (Z)

• information of node pairs
• treatment (T)

• global graph structural properties
• outcome (Y)

• link existence
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3 key factors of a counterfactual question
• node representations (Z)

• information of node pairs
• treatment (T)

• global graph structural properties
• outcome (Y)

• link existence

About the treatment (T)
• global graph structural properties

• id of community/cluster/neighborhood
• or K-core / Louvain / spectral clustering
• 𝑇!" = 1 if 𝑐 𝑣! = 𝑐(𝑣") else 𝑇!" = 0

• 𝑇!" = 1 means node i and node j
• are structurally consistent in one aspect
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3 key factors of a counterfactual question
• node representations (Z)

• information of node pairs
• treatment (T)

• global graph structural properties
• outcome (Y)

• link existence

About the treatment (T)
• global graph structural properties

• id of community/cluster/neighborhood
• or K-core / Louvain / spectral clustering
• 𝑇!" = 1 if 𝑐 𝑣! = 𝑐(𝑣") else 𝑇!" = 0

• 𝑇!" = 1 means node i and node j
• are structurally consistent in one aspect

when 𝑻𝒊𝒋𝑪𝑭 = 𝟏 − 𝑻𝒊𝒋, is the link 𝑨𝒊𝒋𝑪𝑭exist?

Q1: what are the counterfactual links?
that is, the link 𝑨𝒊𝒋𝑪𝑭 that satisfies 𝑻𝒊𝒋𝑪𝑭 = 𝟏 − 𝑻𝒊𝒋



Method
• Q2: How to generate the counterfactual links?
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where ℎ(⋅,⋅) is a metric of measuring the distance between a two edges

To find the counterfactual link (𝑣/, 𝑣0) of the given link (𝑣1, 𝑣2)



Method
• Q2: How to generate the counterfactual links?
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relax

𝑂(𝑁!)

𝑂(𝑁")



Method
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• Q2: How to generate the counterfactual links?

è



Method
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• Q2: How to generate the counterfactual links?

So far, we obtain 𝐴1234, 𝑇1234 from 𝐴12, 𝑇12.
But, how to utilize the 𝐴1234, 𝑇1234?🤔
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Method
• Learning from Counterfactual Links
• train a GNN to predict factual links and counterfactual links 
• given the corresponding treatments
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Method
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GNN 𝑻

𝒁
(𝑨

𝑨,𝑿
(𝑨34

𝑻34

• Learning from Counterfactual Links
• train a GNN to predict factual links and counterfactual links 
• given the corresponding treatments

encode
decode



Method
• Learning from Counterfactual Links
• optimization

1. collect data

2. train

3. fine-tune

4. test
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Experiments
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Consistent improvement against baselines.

Link prediction performances measured by Hits@20



Experiments
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when 𝑻𝒊𝒋 = 𝟏 or 𝑻𝒊𝒋 = 𝟎,
is the link 𝑨𝒊𝒋 still exist?

The individual treatment effect (ITE) can be used to
quantify the effect of treatment on the outcome.

𝑻𝒊𝒋 = 𝟏 𝑻𝒊𝒋 = 𝟎

Experiments Q5: how to justify the effectiveness of counterfactual links?

The averaged treatment effect (ATE)
is the expectation of ITE



Experiments
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Summary

Contributions
1. the first work that aims at improving link prediction by causal inference

2. introduce CFLP that trains GNNs to predict both factual and counterfactual links

3. leverage causal relationship to enhance link prediction

4. CFLP outperforms competitive baselines on several benchmark datasets
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Q&A
Thanks for your attention!
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