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Background | graph learning

However, only powerful is not enough
explainability is also important

Graph data 𝐷 = (𝐴, 𝑋) → GNN 𝑓 → representation 𝑍 → 8𝑌 ⟷ 𝑌

vectornode encode

𝑓: 𝑖 → ℝ!

ℝ!
node representation 𝑍"

i
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However, the mere predictive power of the graph classifier is of limited 
interest to the neuroscientists, which have plenty of tools for the diagnosis 
of specific mental disorders. What matters is the interpretation of the 
model, as it can provide novel insights and new hypotheses. [1]
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Background | explainable graph learning

[1]: Counterfactual Graphs for Explainable Classification of Brain Networks. KDD 2021



Background | explainable graph learning

Core problem: how to provide better explanations?

an important property to trustworthy ML
e.g. identifying the functional groups in a molecule

the learned representation and graph data
are usually highly entangled

explainablePowerful

Graph data 𝐷 = (𝐴, 𝑋) → GNN 𝑓 → prediction 7𝑌 ⟷ ground truth 𝑌

i.e., to approximate 𝑌 by $𝑌 i.e., to determine which parts in 𝐷 contribute to $𝑌
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Background | explainable graph learning
node-level task: requires relevant nodes

• e.g., node classification

link-level task: requires relevant paths
• e.g., link prediction

graph-level task: requires relevant subgraphs
• e.g., graph classification
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To interpret the prediction of a GNN,
i.e., to identify a subgraph that
contributes most to the prediction.



Background | challenges

• Discrete nature of graph structure
• hard to optimize in a differentiable way
• nodes and edges in a graph cannot be resized to the same shape

• Lack of fine-grind annotations
• e.g., node-level / motif-level annotations are blank for graph-level tasks
• we need a suitable objective to train and metric to evaluate the explanation method

• Lack of domain knowledge
• e.g., molecules, social networks, and citation networks
• graph data are less intuitive than images or texts
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Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.

Taxonomy

Instance-level Explanations

• Gradients/Features

• Perturbations (we will focus on)
• GNNExplainer
• PGExplainer
• SubgraphX

• Decomposition

• Surrogate

Model-level Explanations

XGNN (the only one)



Class1:Gradients/Features-Based Methods

12Visualizing and Understanding Convolutional Networks. 2013
https://cs231n.github.io/understanding-cnn/

use the gradients or feature map values as the approximations of input importance

Class1: Gradients/Features-Based Methods
Class2: Perturbation-Based Methods
Class3: Surrogate-based methods
Class4: Decomposition-based methods



Class1: Gradients/Features-Based Methods

• [key idea] use the gradients/features to approximate input importance
• [option1] get gradients of target prediction w.r.t. input by back-propagation
• [option2] map the hidden features to the input space via interpolation

• generally, larger gradients or feature values indicate higher importance
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no extra learning procedures not originally designed for graphs

4 representative
methods

Class1: Gradients/Features-Based Methods
Class2: Perturbation-Based Methods
Class3: Surrogate-based methods
Class4: Decomposition-based methods
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Class2: Perturbation-Based Methods

• [key idea] to study the output variations w.r.t input perturbations
• intuitively, 

• when important input information is retained, the outputs should be similar to the original ones

• when important input information is removed, the outputs should change greatly

è “house” è “house” √ è “tree”×

Class1: Gradients/Features-Based Methods
Class2: Perturbation-Based Methods
Class3: Surrogate-based methods
Class4: Decomposition-based methods

with mask 𝑀! with mask 1 −𝑀!
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Class2: Perturbation-Based Methods

𝑀!∗ = min
#!

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓∗ 𝐴 , 𝑓∗ 𝐴 ⋅ 𝑀!
s. t. 𝑓∗ = min

$
𝐿%&' 𝑓 𝐴 , 𝑌

Three key aspects here
• the mask generation algorithm
• the type of masks
• the objective function

in a bi-level form

A general framework:

The 𝐴 ⋅ 𝑀! here is a subgraph



16

Class2: Perturbation-Based Methods

need extra learning procedures originally designed for graphs

representative
methods

※
※

※



GNNExplainer: Generating Explanations for Graph Neural Networks. NeurIPS 2019.

Given a trained GNN and its prediction yi=Basketball for node vi, 
GNNExplainer identifies a small subgraph of the input graph that are most influential for yi

Class2 | GNNExplainer

𝑀!∗ = min
#!

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓∗ 𝐴 , 𝑓∗ 𝐴 ⋅ 𝑀!
s. t. 𝑓∗ = min

$
𝐿%&' 𝑓 𝐴 , 𝑌

learn a mask for each node vi,vj…

Class2: Perturbation-Based Methods
• GNNExplainer
• PGExplainer
• SubgraphX



Class2 | GNNExplainer

• the first general, model-agnostic approach for providing explanations
• to learn soft masks for edges and features, treats masks as trainable variables
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• the masks are optimized by maximizing the mutual information between the 
predictions of the original graph and the predictions of the sampled graph

è

è



Class2 | GNNExplainer

To avoid trivial solutions, constraints on the mask are necessary.

1. (entropy constraint) element-wise entropy to encourage the mask to be discrete.

2. (size constraint) size penalty as the sum of all elements in a mask.

3. (implicit connectivity constraint) get the largest connected subgraph as the explanation.

𝐻 𝑥 = −𝑥𝑙𝑜𝑔"(𝑥)



GNNExplainer is better than

attention/gradient-based methods.

Class2 | GNNExplainer



However, do we really need to

explain each prediction by learning its mask individually?🤔

Take a break☕



Class2 | PGExplainer
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PGExplainer emphasize the collective and inductive nature of this problem
• the explanations can provide a global understanding of the trained GNNs

A shared explainer
for all graphs

Class2: Perturbation-Based Methods
• GNNExplainer
• PGExplainer
• SubgraphX

Parameterized explainer for graph neural network. NeurIPS 2020.



Class2 | PGExplainer
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[training details]

Given an input graph, 

1. it first obtains the embeddings for each edge by 
concatenating the corresponding node embeddings

2. uses the edge embeddings to predict the 
importance of each edge

3. the discrete masks are sampled via the 
reparameterization trick

4. Finally, the mask predictor is trained by maximizing
the mutual information between the original 
predictions and new predictions



Class2 | PGExplainer
Constraints
In addition to the aforementioned entropy/size constraint,
PGExplainer also adopts a explicit connectivity constraint.

Reason: in many real-life scenarios, determinant motifs are expected to be connected. 

This constraint is implemented with the cross-entropy of adjacent edges connecting to the same node.

e.g., node j and node k both connected to the node i. 
If edge (i, j) is selected in the the explanatory graph, then adjacent edge (i, k) should also be included
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Class2 | PGExplainer
PGExplainer is better than GNNExplainer.



Connected subgraphs are more intuitive and human-intelligible.

However, the learned subgraphs by GNNExplainer/PGExplainer

are not always connected.

Is there a better way to extract connected subgraphs?🤔

Take a break☕



• to explore subgraph-level explanations for GNNs
• use Monte Carlo Tree Search to explore different subgraphs via node pruning 
• select the most important subgraph w.r.t. the Shapley value as the explanation

27

Class2 | SubgraphX

=Monte Carlo Tree Search è
(the search algorithm)

Shapley value è
(the score function)

On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.

Class2: Perturbation-Based Methods
• GNNExplainer
• PGExplainer
• SubgraphX
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Class2 | SubgraphX

On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.

SubgraphX is better than

GNNExplainer and PGExplainer.
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Class3: Surrogate-based methods
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[key idea] employ a simple and interpretable surrogate model 
• to approximate the predictions of the complex deep model 
• the explanations from the interpretable model are regarded as the explanations of the GNN

GNNx y surrogatex y surrogate explanations

step1. collecting data step2. fitting step3. explaining

Learning procedures:

key differences
• how to obtain the local dataset (x,y pairs)
• what interpretable surrogate model to use

representative
methods

x y

Class1: Gradients/Features-Based Methods
Class2: Perturbation-Based Methods
Class3: Surrogate-based methods
Class4: Decomposition-based methods

x



Class3 | PGM-Explainer

31
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. NeurIPS 2020.

• to build a probabilistic graphical model to provide instance-level explanations
• an interpretable Bayesian network is employed to fit the local dataset 
• then to explain the predictions of the original GNN model

• e.g., estimate the probability that node E has the predicted role given other nodes
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Class4: Decomposition-based methods

It can only study the importance of different 
nodes but not the graph structures.

Class1: Gradients/Features-Based Methods
Class2: Perturbation-Based Methods
Class3: Surrogate-based methods
Class4: Decomposition-based methods

[key idea]
to measure the importance of
input features by decomposing
the original model predictions 
into several terms.



So far, we have reviewed the explanation methods of 4 classes.

How can we evaluate these methods?🤔

Take a break☕



Metrics and evaluation | Fidelity
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if the identified mask are discriminative to the model
when the mask is removed, the prediction should change significantly   è higher Fidelity+
when the mask is retained, the prediction should be similar è lower Fidelity-

Good explanations should be faithful to the model.

A → 𝐵
(sufficiency)

¬A → ¬𝐵
(necessity)



Metrics and evaluation | Sparsity
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Good explanations should be sparse and compact.

è capture the most important input features and ignore the irrelevant ones

A fair comparison can be conducted under the same level of sparsity



Metrics and evaluation | Stability & Accuracy
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Good explanations should be stable.

• when small changes are applied to the input without affecting the predictions

• the explanations should remain similar

Good explanations should be accurate.

• compare the explanations with such ground truths

• the closer to ground truths, the better explanations 

• specific metrics here can be accuracy, F1 score, ROC-AUC score.

• however, the Accuracy metric cannot be applied to real-world datasets due to the lack of ground truths.



SubgraphX is the best method hereMetrics and evaluation
higher Fidelity+👍

lower Fidelity-👍
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Taxonomy | summary

step1: obtain the model parameter 8𝜃
• i.e., train the predictor

step2: optimize the subgraph extractor 8𝜙
• approximate the MI: 𝐼 𝐺'; 7𝑌 − 𝐼 𝐺; 7𝑌 → 0
• usually with constraints (e.g., size, connectivity)

The post-hoc methods are popular
𝑓34

𝑔35

𝐺 8𝑌 𝑌

𝑓34
𝐺6 8𝑌 𝑌𝐺

fixed
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𝑓() ∘ 𝑔(* is the interpretating system

Class1: Gradients/Features-Based Methods
Class2: Perturbation-Based Methods
Class3: Surrogate-based methods
Class4: Decomposition-based methods

As Accuracy(𝑓34) < Accuracy(𝑓34 ∘ 𝑔35) is usual,
can we provide interpretation without sacrificing the accuracy?🤔



Take a break☕

a joint training of 𝑓34 ∘ 𝑔35 might be better?🤔

𝑓() ∘ 𝑔(*

𝑔35 𝑓34
𝐺6 8𝑌 𝑌𝐺
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do not impose any potentially biased constraints 
• e.g., graph size or connectivity

use information constraint to select label-relevant subgraph
• inspired by the Graph Information Bottleneck (GIB)
• form a joint learning framework of 𝑓34 and 𝑔35

𝐺6 8𝑌 𝑌𝐺

42

𝐼(𝐺#; 𝐺) ↓ 𝐼(𝐺#; 𝑌) ↑

𝑔$%

Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism. ICML 2022.

GSAT | method



GSAT | method

𝑔5 𝑓4
𝐺6 8𝑌 𝑌𝐺

joint training

𝐺

𝐺68𝑌

𝑔5

𝑓4
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GSAT | Full learning objective

𝑔$%
𝑓$&

𝑔5 𝑓4
𝐺6 8𝑌 𝑌𝐺

joint training
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GSAT | Experiment

Interpretation👍

Prediction👍
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GSAT | Experiment

since the GSAT dose not make any assumptions on the selected subgraphs,
the improvement of GSAT can be even more

if the true subgraph are dis-connected or vary in sizes.
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Summary

A review of 4-class explanation methods
• Class1: Gradients/Features-Based Methods
• Class2: Perturbation-Based Methods
• Class3: Surrogate-based methods
• Class4: Decomposition-based methods

Future directions
• go beyond the post-hoc manner
• model-level explanation
• explain for KG reasoners and corresponding analysis
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Most Influential
1. Explainability in graph neural networks: A taxonomic survey. Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. ARXIV 2020. paper

2. Gnnexplainer: Generating explanations for graph neural networks. Ying Rex, Bourgeois Dylan, You Jiaxuan, Zitnik Marinka, Leskovec Jure. NeurIPS 2019. paper code

3. Explainability methods for graph convolutional neural networks. Pope Phillip E, Kolouri Soheil, Rostami Mohammad, Martin Charles E, Hoffmann Heiko. CVPR 2019.paper

4. Parameterized Explainer for Graph Neural Network. Luo Dongsheng, Cheng Wei, Xu Dongkuan, Yu Wenchao, Zong Bo, Chen Haifeng, Zhang Xiang. NeurIPS 2020. paper code

5. Xgnn: Towards model-level explanations of graph neural networks. Yuan Hao, Tang Jiliang, Hu Xia, Ji Shuiwang. KDD 2020. paper.

6. Evaluating Attribution for Graph Neural Networks. Sanchez-Lengeling Benjamin, Wei Jennifer, Lee Brian, Reif Emily, Wang Peter, Qian Wesley, McCloskey Kevin, Colwell Lucy, Wiltschko Alexander. NeurIPS 2020.paper

7. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. Vu Minh, Thai My T.. NeurIPS 2020.paper

8. Explanation-based Weakly-supervised Learning of Visual Relations with Graph Networks. Federico Baldassarre and Kevin Smith and Josephine Sullivan and Hossein Azizpour. ECCV 2020.paper

9. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. Lu, Yi-Ju and Li, Cheng-Te. ACL 2020.paper

10. On Explainability of Graph Neural Networks via Subgraph Explorations. Yuan Hao, Yu Haiyang, Wang Jie, Li Kang, Ji Shuiwang. ICML 2021.paper

Recent SOTA

1. Quantifying Explainers of Graph Neural Networks in Computational Pathology. Jaume Guillaume, Pati Pushpak, Bozorgtabar Behzad, Foncubierta Antonio, Anniciello Anna Maria, Feroce Florinda, Rau Tilman, Thiran
Jean-Philippe, Gabrani Maria, Goksel Orcun. Proceedings of the IEEECVF Conference on Computer Vision and Pattern Recognition CVPR 2021.paper

2. Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. Wu Haoran, Chen Wei, Xu Shuang, Xu Bo. NAACL 2021. paper

3. When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods. Faber Lukas, K. Moghaddam Amin, Wattenhofer Roger. KDD 2021. paper

4. Counterfactual Graphs for Explainable Classification of Brain Networks. Abrate Carlo, Bonchi Francesco. Proceedings of the th ACM SIGKDD Conference on Knowledge Discovery Data Mining KDD 
2021. paper

5. Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs. Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. International Conference on Learning Representations ICLR 2021.paper

6. Generative Causal Explanations for Graph Neural Networks. Lin Wanyu, Lan Hao, Li Baochun. Proceedings of the th International Conference on Machine Learning ICML 2021.paper

7. Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity. Henderson Ryan, Clevert Djork-Arné, Montanari Floriane. Proceedings of the th International 
Conference on Machine Learning ICML 2021.paper

8. Explainable Automated Graph Representation Learning with Hyperparameter Importance. Wang Xin, Fan Shuyi, Kuang Kun, Zhu Wenwu. Proceedings of the th International Conference on Machine 
Learning ICML 2021.paper

9. Higher-order explanations of graph neural networks via relevant walks. Schnake Thomas, Eberle Oliver, Lederer Jonas, Nakajima Shinichi, Schütt Kristof T, Müller Klaus-Robert, Montavon Grégoire. arXiv preprint 
arXiv:2006.03589 2020. paper

10. HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media. Chen, Hsin-Yu and Li, Cheng-Te. EMNLP 2020. paper
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Related works | interpretating GNN

https://github.com/THUDM/cogdl/blob/master/gnn_papers.md#explainability
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https://openaccess.thecvf.com/content_CVPR_2019/papers/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.pdf
https://arxiv.org/abs/2011.04573
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Q&A
Thanks for your attention!
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interpretable v.s. explainable

• We consider a model to be “interpretable” if the model itself can 
provide humanly understandable interpretations of its predictions
• Note that such a model is no longer a black box to some extent. 
• For example, a decision tree model is an “interpretable” one.

• Meanwhile, an “explainable” model implies that model is still a black box 
• its predictions could potentially be understood by post-hoc techniques.

51Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.



Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.

Taxonomy



• the mutual information (MI) of two random variables
is a measure of the mutual dependence between the two variables.

Preliminaries | mutual information

https://en.wikipedia.org/wiki/Mutual_information
53

• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌
• 𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋
• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

https://en.wikipedia.org/wiki/Mutual_information


• the mutual information (MI) of two random variables
is a measure of the mutual dependence between the two variables.

• definition: 𝐼 𝑋; 𝑌 = 𝐼 𝑌; 𝑋 = 𝐷PQ(𝑝 𝑥, 𝑦 ||𝑝 𝑥 ⨂𝑝(𝑦))

• discrete variables: 𝐼 𝑋; 𝑌 = ∑R∈T∑U∈V 𝑝 𝑥, 𝑦 log( W U,R
W U W(R)

)

• continuous variables: 𝐼 𝑋; 𝑌 = ∫T ∫V 𝑝 𝑥, 𝑦 log( W U,R
W U W(R)

)

Preliminaries | mutual information

https://en.wikipedia.org/wiki/Mutual_information
54

https://en.wikipedia.org/wiki/Mutual_information


Preliminaries | mutual information

• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌
• 𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋
• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

𝐻 𝑥 = −𝑥𝑙𝑜𝑔"(𝑥)
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The existing post-hoc methods | problems

Post-hoc methods just perform one-step projection 
to the information-constrained space (Ω)

cons
• always suboptimal (low accuracy)
• sensitive to the pre-trained model (high variance)

the pretrain model

the learned projection
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Graph information bottleneck (GIB)

Graph Information Bottleneck. NeurIPS 2020.

D=(X,A) → (GNN) → Z↔ Y
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The proposed method | extractor

𝑔5 𝑓4
𝐺6 8𝑌 𝑌𝐺

𝐺

𝐺6

𝑔5 1. obtain the node embeddings (representation)

𝐺𝑁𝑁 𝐺 → 𝑯 ∈ ℝX×Z

2. obtain the edge embeddings

𝑯[\][ = { 𝒉^ , 𝒉_ : 𝑒^_ ∈ ℇ}

3. obtain the edge probabilities (importance)

𝑷[\][ = 𝑀𝐿𝑃(𝑯[\][)

4. obtain the sampled graph 𝐺' with random noise

𝛼^_ ~ Bernoulli(𝒑^_ + 𝑢)
𝐴` = 𝛼⨀𝐴 ∈ ℝX×X

𝐺` = (𝐴` , 𝑋) 58



The proposed method | extractor

𝑔5 𝑓4
𝐺6 8𝑌 𝑌𝐺

𝐺

𝐺6

𝑔5
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The proposed method | predictor

𝑔5 𝑓4
𝐺6 8𝑌 𝑌𝐺

𝐺

𝐺6

𝑔5

8𝑌 𝑓4
classification loss, e.g., cross entropy
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Experiment

graph information bottleneck (GIB)👍
stochasticity (gumbel trick)👍
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Experiment

GSAT can remove spurious correlations in the training data👍
• mainly due to the injecting stochasticity
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