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Background | graph learning
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Background | graph learning

GraphdataD = (4,X) - GNN f - representationZ - ¥V <Y

node . vector
e
fii—>R \ o J
]Rd
O node representation Z;

However, only powerful is not enough
explainability is also important



Background | explainable graph learning

However, the mere predictive power of the graph classifier is of limited
interest to the neuroscientists, which have plenty of tools for the diagnosis
of specific mental disorders. What matters is the interpretation of the
model, as it can provide novel insights and new hypotheses. (']

[1]: Counterfactual Graphs for Explainable Classification of Brain Networks. KDD 2021



Background | explainable graph learning

Graph data D = (4,X) — GNN f - prediction Y < ground truth Y

Powerful explainable
i.e., to approximate Y by ¥ i.e., to determine which parts in D contribute to Y
the learned representation and graph data an important property to trustworthy ML
are usually highly entangled e.g. identifying the functional groups in a molecule

Core problem: how to provide better explanations!



Background | explainable graph learning

node-level task: requires relevant nodes
* e.g, node classification

/oﬁ..lml\.(.ﬂmll"
o A%

“Sailing” 7=/===

link-level task: requires relevant paths
* e.g, link prediction

(2793, brother, 2792)

identity
<o 2785 2785 fathe,
2793 ¢ 2792
= identity mothe
2791 2791

graph-level task: requires relevant subgraphs
* e.g,graph classification

To interpret the prediction of a GNN,
i.e., to identify a subgraph that
contributes most to the prediction.




Background | challenges

* Discrete nature of graph structure
* hard to optimize in a differentiable way
* nodes and edges in a graph cannot be resized to the same shape

* Lack of fine-grind annotations
* e.g., node-level / motif-level annotations are blank for graph-level tasks
* we need a suitable objective to train and metric to evaluate the explanation method

* Lack of domain knowledge
* e.g., molecules, social networks, and citation networks
* graph data are less intuitive than images or texts
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Taxonomy

Instance-level Explanations
Gradients/Features (Graph Neural NetwokD

Explanations

Perturbations (we will focus on) A
* GNNExplainer (e ) @@=

* PGExplainer
CGradients/Features) Perturbations ) C Decomposition )

* SubgraphX
Generation )
Surrogate v v v v

GNNEXxplainer
- SA PGExplainer LRP GraphLime
Guided BP ZORRO idods
Excitation BP RelEx XGNN
CAM GraphMask GNN-LRP PGM-Explainer
Grad-CAM .

Surrogate

* Decomposition

Causal Screening
SubgraphX

Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.



Class|: Gradients/Features-Based Methods

Class|: Gradients/Features-Based Methods

use the gradients or feature map values as the approximations of input importance

Visualizing and Understanding Convolutional Networks. 2013 12
https://cs23 | n.github.io/understanding-cnn/



Class|: Gradients/Features-Based Methods

Class|: Gradients/Features-Based Methods

* [key idea] use the gradients/features to approximate input importance
* [option|] get gradients of target prediction w.r.t. input by back-propagation
* [option2] map the hidden features to the input space via interpolation

* generally, larger gradients or feature values indicate higher importance

Method TYPE LEARNING TASK TARGET BLACK-BOX FLow DESIGN
4 rep resentative SA [54], [55] Instance-level X GC/NC N/E/NF X Backward X
methods Guided BP [54] Instance-level X GC/NC N/E/NF X Backward X
CAM [55] Instance-level X GC N X Backward X
Grad-CAM [55] Instance-level X GC N X Backward X
N—

no extra learning procedures not originally designed for graphs



J Class2: Perturbation-Based Methods

Class2: Perturbation-Based Method

* [key idea] to study the output variations w.r.t input perturbations
* intuitively,
* when important input information is retained, the outputs should be similar to the original ones

* when important input information is removed, the outputs should change greatly

I:I>'— —-<ﬁ = “house” ' @ => “house” > /‘43 = “tree” X
f :

with mask M, with mask (1 — My)



Class2: Perturbation-Based Methods

A general framework:

X
Input graph
@
U
ORC

Objective function
————————————— Prediction

Feature mask

; |

Edge mask

Mask generation NN
algorithm o G
1

Node mask

(o[ 09]0a]o0
- J

The A - My here is a subgraph

Three key aspects here

* the mask generation algorithm
* the type of masks

* the objective function

My = rll\l/[in Distance(f*(A), f*(A - My))
s.t f7 =min L5 (f(A),Y)

in a bi-level form



Class2: Perturbation-Based Methods

representative
methods

Method TYPE LEARNING TASK TARGET  BLACK-BOX FLow DESIGN
SA [54], [55] Instance-level X GC/NC N/E/NF X Backward X
Guided BP [54] Instance-level X GC/NC N/E/NF X Backward X
CAM [55] Instance-level X GC N X Backward X
Grad-CAM [55] Instance-level X GC N X Backward X
GNNExplainer [46] Instance-level [ 4 \ Ge /NC E/NF 4 Forward [ v A
PGExplainer [47] Instance-level v GC/NC E X Forward 4
GraphMask [57] Instance-level v GC/NC E X Forward v
ZORRO [56] Instance-level X GC/NC N/NF v Forward v
Causal Screening [58]  Instance-level X GC/NC E v Forward v
SubgraphX [48] Instance-level \ v ) GC/NC  Subgraph v Forward \ v )

need extra learning procedures

originally designed for graphs



Class2: Perturbation-Based Methods
* GNNExplainer

Class2 | GNNExplainer

Given a trained GNN and its prediction yi=Basketball for node vi,
GNNExplainer identifies a small subgraph of the input graph that are most influential for yi

GNN model training and predictions Explaning GNN'’s predictions

ﬁ. “Basketball”

7; = “Basketball” y; = “Sailing”

GNNExplainer

TRy

“Sailing” /~——=

My = rlr\l/[in Distance(f*(A), f*(A - My))
s.t f7 =minLgs(f(A),Y)

Y

learn a mask for each node vi,y;j...

GNNExplainer: Generating Explanations for Graph Neural Networks. NeurlPS 2019.



Class2 | GNNExplainer

* the first general, model-agnostic approach for providing explanations

* to learn soft masks for edges and features, treats masks as trainable variables

IICl;aXMI Y, (Gs,Xs)) =H(Y)-H(Y|G=Gg,X = Xg)
S

-> H(Y‘G:Gs,XZXs) — _]EYIGS,XS [logP¢<Y|G:G5,X=XS>] .

> mm Z[ ]1ng(1)( :y|[G:AC®0(Mj,X:XC)

* the masks are optimized by maximizing the mutual information between the
predictions of the original graph and the predictions of the sampled graph



H(x) = —xlog,(x)

Class2 | GNNExplainer |

i;\/0.5
To avoid trivial solutions, constraints on the mask are necessary.
rrcl;aXMI(Y, (Gs,Xs))=H(Y)-HY|G=Gs,X = Xg) 05 —
S Pr(X=1)

|. (entropy constraint) element-wise entropy to encourage the mask to be discrete.
2. (size constraint) size penalty as the sum of all elements in a mask.

3. (implicit connectivity constraint) get the largest connected subgraph as the explanation.



Class2 | GNNExplainer

Computation graph  GNNExplainer Grad Att Ground Truth Computation graph GNNEXxplainer Grad Att Ground Truth
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However, do we really need to

explain each prediction by learning its mask individually?



Class2: Perturbation-Based Methods

Classz I PGExplainer - PGExplainer

A shared explainer Explanation for
Mutagen 1 Mutagen 2 | [Nonmutagen1 for all graphs mutagens
Y 3 _ 2 e
. — \’/. *— .
:>.—./(\/\_. 5 =N e @ — [PGExplainer | —
\ — \,_,. \/<;__.\
N ek NO,

PGExplainer emphasize the collective and inductive nature of this problem
* the explanations can provide a global understanding of the trained GNNs

22
Parameterized explainer for graph neural network. NeurlPS 2020.



Class2 | PGExplainer

[training details]

Explanation for

Mutagen 1 Mutagen 2 | [Nonmutagen1 mutagens

Y [ e Given an input graph,
>"/\/\)- e W - *@—» PGExplainer | —
Py -y [ NO,

5 |. it first obtains the embeddings for each edge by
concatenating the corresponding node embeddings

Edge , latent  Binary  Sampled Original 2 uses the edge embeddings to predict the
embeddings ¥ variables () concrete graph @S graph => |mP0|"tance Of eaCh edge

Wo1

w . .

woz _>|I., _>I : *@ > [T, s 7, 3. the d|screFe masl<s are sampled via the
13 L., . reparameterization trick

W3 l[ Training with

ming H(Y,,Y)

(2) (3)

4. Finally, the mask predictor is trained by maximizing
the mutual information between the original
predictions and new predictions

max MI(Y,, G,) = H(Y,) — H(Y,|G = G,)

23



Class2 | PGExplainer

Constraints
In addition to the aforementioned entropy/size constraint,
PGExplainer also adopts a explicit connectivity constraint.

Reason: in many real-life scenarios, determinant motifs are expected to be connected.

This constraint is implemented with the cross-entropy of adjacent edges connecting to the same node.
H(eij, ez-k;) — —[(1 — 62']') lOg(l — Gz‘k) + € lOg eik:]-

e.g.,node j and node k both connected to the node i.
If edge (i, ) is selected in the the explanatory graph, then adjacent edge (i, k) should also be included



Class2 | PGExplainer

Base

Motifs

Features

-----------------------------------------------------
“‘

Explanations
by GNN-
Explainer

Explanations
by PG-
Explainer

Node Classification

BA-Community

Community O

Tree-Cycles

PGExplainer is better than GNNExplainer.

Tree-Grid

Graph Classification

BA-2motifs

=
a8

Label 0 Label 1

MUTAG

3

s &b

NO,  NH,

-----------------------
3
3

G *
G .
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

25
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Connected subgraphs are more intuitive and human-intelligible.

However, the learned subgraphs by GNNExplainer/PGExplainer

are not always connected.

Is there a better way to extract connected subgraphs? (20



Class2: Perturbation-Based Methods

Class2 | SubgraphX . S

* to explore subgraph-level explanations for GNNs
* use Monte Carlo Tree Search to explore different subgraphs via node pruning
* select the most important subgraph w.r.t. the Shapley value as the explanation

Monte Carlo Tree Search = g = {gl, T 7g’i7 U 7gn}

(the search algorithm)

Shapley value =» g* = argmax Score(f(.)’ g7 gz)

(the score function) |g |<N ,
2 I1nin

On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021. o



Class2 | SubgraphX
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On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021. 28
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Class3: Surrogate-based methods

Class3: Surrogate-based methods

[key idea] employ a simple and interpretable surrogate model
* to approximate the predictions of the complex deep model
* the explanations from the interpretable model are regarded as the explanations of the GNN

Learning procedures:

i
| :
X GNN y X surrogate y ' | X [ surrogate (* explanations
I
: '
stepl. collecting data | step2. fitting | step3. explaining
_________________________________________ U R
. Method TYPE LEARNING TASK TARGET BLACK-BOX FLow DESIGN
representatlve GraphLime [61] Instance-level v NC NF v Forward X
RelEx [62] Instance-level 4 NC N/E v Forward v
methOdS PGM-Explainer [63] Instance-level 4 GC/NC N v Forward v

key differences
* how to obtain the local dataset (x,y pairs)

* what interpretable surrogate model to use 20



Class3 | PGM-Explainer

--------------------------------------------------
. *

*
*

P(E) = 0.472

P(E|A) = 0.658

I P(E|AB) = 0.760
: P(EJABC) = 0.867
! P(E|ABCD) = 0.911

v Motifs
BA graph 2

(a) Input graph. (b) Motif containing F .

(c) PGM-Explainer. (d) GNNEXxplainer.

* *
., o*
------------------------------------------------

* to build a probabilistic graphical model to provide instance-level explanations
* an interpretable Bayesian network is employed to fit the local dataset

* then to explain the predictions of the original GNN model
* e.g., estimate the probability that node E has the predicted role given other nodes

31
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. NeurlPS 2020.



Class4: Decomposition-based methods

Class4: Decomposition-based methods

Target score Designed BP
explanation <
. Explain Distribute Distribute
0.5 \
,o.zs
. 015 <+ - LRP LRP LRP
[key idea] \
. 0.1 o
to measure the importance of  veespumion
input features by decomposing  os@n_
. e . . 06l )
the original model predictions | «- EB EB EB
0.025
into several terms. o ) N
Node explanation score
O
0
o.7§o <4 - GNN-LRP GNN-LRP GNN-LRP
O J
Walk explanation
Method TYPE LEARNING TASK TARGET BLACK-BOX FLow DESIGN . .
LRP [54], [59] Instance-level X GC/NC N X Backward X It can Onl)’ StUd)’ the Importance Of dlfferent
Excitation BP [55] Instance-level X GC/NC N X Backward X
GNN-LRP [@]‘ Instance-level X GC/NC Walk X Backward v nOdeS bUt not the graph structures.

32
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So far, we have reviewed the explanation methods of 4 classes.

How can we evaluate these methods? (&



Metrics and evaluation | Fidelity

Good explanations should be faithful to the model.

if the identified mask are discriminative to the model
when the mask is removed, the prediction should change significantly =2 higher Fidelity+

when the mask is retained, the prediction should be similar =>» lower Fidelity-
A > =B 1 &
L — . . b 1—m.
Faidelat prov — iy, — : Vs )
(neCeSSit)’) taell y+ N zzzl(f(g )yz f(gz )yz)
A - B 1 &
: 4, prob _ . B m;
(sufficiency) Fudelity N Z(f(gZ)yz F(Gi")y:)

1=1

34



Metrics and evaluation | Sparsity

Good explanations should be sparse and compact.

=>» capture the most important input features and ignore the irrelevant ones

. 1 m;
Sparsity = N Z(l \|M‘| ),
i=1 ¢

A fair comparison can be conducted under the same level of sparsity

35



Metrics and evaluation | Stability & Accuracy

Good explanations should be stable.
* when small changes are applied to the input without affecting the predictions

* the explanations should remain similar

Good explanations should be accurate.
* compare the explanations with such ground truths
* the closer to ground truths, the better explanations

* specific metrics here can be accuracy, Fl score, ROC-AUC score.

* however, the Accuracy metric cannot be applied to real-world datasets due to the lack of ground truths.

36



M et ri CS an d eval u ati on SubgraphX is the best method here

Graph-SST2 Graph-SST5 Graph-Twitter 1 1 H +
ol higher Fidelity TABLE 3
03 :“Z Q*ﬂ\o o \\ The Fidelity+ comparisons between different GNN explanation techniques and the random designation baseline.
; Z: \\ %0:175 %02: — : Methods Graph-Twitter ~ Graph-SST2 G}‘aph-SST5 BBBP  BA-2Motifs BA-Shapes
01s 0150 \\ Sparsity=0.7 Sparsity=0.6
010 o2 o Random 0.1342 0.0915 0.1419 0.1212 0.4903 0.1884
oo 0.50 0.55 0.60 0.65 0.70 0.75 0.80 " 0.50 0.55 0.60 0.65 0.70 0.75 0.80 o 0.50 0.55 0.60 0.65 0.70 0.75 0.80 Subgraphx 0.2836 0'3152 0.2351 0‘4521 0'8642 0.3171
sparsity sparsity sparsity Grad-CAM 0.2418 0.2414 0.2118 0.2036 0.6112 N/A
838P BA-2Motifs o3 BA-shapes GNN-GI 0.2593 0.2571 0.2031 0.3051 0.0466* 0.1723*
o5 08 : os]  o-@00-0-0—o0—0—o—" GNNEXxplainer 0.1452 0.0953 0.1441 0.1057* 0.4972 0.2925
. . s e PGExplainer 0.1704 0.1889 0.1854 0.1464 0.1126* 0.2015
. ;6 - Sl o— GNN-LRP 0.1931 0.1363 0.1813 0.0860* 0.5125 0.3386
gos a\\ ) \ ?m v———><: DeepLift 0.2336 0.2454 0.1924 0.3039 0.2156* 0.0411*
0.2 x\( * . 02 \q\«\q 0.10 1 H
== lr————| o lower Fidelity- TABLE 4
o ok 0w ok W o 0w ok 0B 0w oB Tl on o 0% 0% om om0 o o The Fidelity- comparisons between different GNN explanation techniques and the random designation baseline.
—O— SubgraphX +- Grad-CAM —— GNN-GI —O— GNNExplainer GNN-LRP —<— Deeplift =~ —>— PGExplainer
Methods Graph-Twitter ~ Graph-SST2 ~ Graph-SST5  BBBP  BA-2Motifs =~ BA-Shapes
Fig. 6. The Fidelity+ comparisons between different GNN explanation techniques under different Sparsity levels. Sparsity=0.7 Sparsity=0.6
Random 0.2825 0.2745 0.2961 0.2168 0.5394 0.2567
Graph-55T2 Graph-55T5 Graph-Twitter SubgraphX -0.1085 -0.0288 -0.0298 -0.0169 0.0686 -0.0792
025 o3 02 Grad-CAM -0.0245 -0.0069 0.0987 0.0456 0.2529 N/A
- GNN-GI -0.0715 0.0147 0.0951 0.0039 0.5193 0.1318
L ois Cons / ) :;Z / GNNEXxplainer 0.1848 0.1992 0.2471 0.1647 0.5337 -0.0017
£ 0 / Pow] % o0s / N PGExplainer 0.0887 0.0852 0.1543 0.1183 0.0227 0.0658
005 // 7 005 // 000 GNN-LRP 0.2060 0.1919 0.2164 0.1746 0.4314 -0.0026
oo - 0.00 5 005 V,/—e’//_/— DeepLift -0.0382 -0.0183 0.0674 -0.0002 0.4179 0.2790*
o e e )  TABLES N
20 — 0s L‘:ﬁh\ 04 The Accuracy and Stability comparisons between different GNN explanation techniques.
Cow /;/,,ﬂi‘//{ ’ o —_— e Methods BA-shapes BA-Community
: . go2 . : £ Metric Accuracy  Stability  Accuracy  Stability
"o . ’ Fo2 - = —— GNN-GI 0.8369 0.1361 0.8291 0.1723
000 " 01 D’/MJ’L o1 ® — GNNEXxplainer 0.8786 0.1721 0.9194 0.1820
M 00 RS NI S PGExplainer 0.7147 0.0522 0.6843 01177
050 055 060 g::rswy 070 075 080 050 055 060 (Sl::rswly 070 075 080 050 055 060 (;.;smy 070 075 080 GNN-LRP 0.9243 0.1872 0.8357 0.1239
—0— SubgraphX +- Grad-CAM  —v— GNN-GI —o— GNNExplainer GNN-LRP  —< Deeplift ~—>— PGExplainer DeepLift 0.5698 0.0432 0.4190 0.0842
Fig. 7. The Fidelity- comparisons between different GNN explanation techniques under different Sparsity levels.
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Taxonomy | summary

The post-hoc methods are popular

step|: obtain the model parameter 6
* i.e, train the predictor

step2: optimize the subgraph extractor ¢
* approximate the MiI: I(GS; 17) — I(G; 17) -0
* usually with constraints (e.g., size, connectivity)

Class|: Gradients/Features-Based Methods

Class2: Perturbation-Based Methods

Class3: Surrogate-based methods
Class4: Decomposition-based methods

gcT) ] f’é

G

fge ggis the interpretating system

As Accuracy(fp) < Accuracy(fg © gg) is usual,
can we provide interpretation without sacrificing the accuracy? ¢

A 4

39
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f5°9%

~Q
h.<

G G,

a joint training of f5 o 93 might be better!? &)
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GSAT | method

use information constraint to select label-relevant subgraph
* inspired by the Graph Information Bottleneck (GIB)
* form a joint learning framework of f7 and gz

93 _
G| G, A

N

1(Gg;G) L 1(Gg;Y) T

mcgn —I(Gs;Y)+ BI(Gs;G), s.t. Gg ~ gq;(G)

do not impose any potentially biased constraints
* e.g., graph size or connectivity

Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism. ICML 2022.



GSAT | method

G

@-Low

__________________________________________________________

.................

. MLPg
+ Predictor fj

- e U . e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

joint training

9o

'GS

fo

min —I(Gg;Y) + BI(Gs; G), s.t. Gg ~ g4(G)

¢

~Q
A
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joint training

)

GSAT | Full learning objective

9e

G

min —I(Gg;Y) + BI(Gs;G), s.t. Gg ~ g¢(G)

¢

min —E [log Py (Y |Gs)] + AE [KL(P4(Gs|G)||Q(Gs))]

0,¢

;GS

fo

\ 4
=~
A

I(Gs;G) < Eg [KL(Py(Gs|G)||Q(Gs))]
I(Gs;Y) > Eqg,y [logPe(Y|Gs)] + H(Y)

(93)
(f3)

44




GSAT |

Experiment

Table 1. Interpretation Performance (AUC). The underlined results highlight the best baselines. The bold font and bold" font highlight
when GSAT outperform the means of the best baselines based on the mean of GSAT and the mean-2*std of GSAT, respectively.

SPURIOUS-MOTIF

BA-2MOTIFS MUTAG MNIST-75sp b—05 b—0.7 b=0.9
GNNEXPLAINER  67.35 4 3.29 61.98 + 5.45 59.01 + 2.04 62.62 + 1.35 62.25 + 3.61 58.86 4+ 1.93
PGEXPLAINER 84.59+9.09  60.91 +17.10  69.34 + 4.32 69.54 + 5.64 72.33 +9.18 72.34 4+ 2.91
GRAPHMASK 92.54 + 8.07 62.23 4+ 9.01 73.10 + 6.41 72.06 + 5.58 73.06 + 4.91 66.68 + 6.96
. IB-SUBGRAPH 86.06 + 28.37  91.04 + 6.59 51.20 +5.12 57.29+4+ 14.35  62.89 + 15.59  47.29 + 13.39
Inte rpretation DIR 8278 +£10.97 6444 +2881  3235+£9.39  T815+1.32  TT.68+122  49.08 £ 3.66
GIN+GSAT 98.74" + 0.55 99.60" + 0.51 83.36" +1.02 7845+3.12  T4.07+5.28 71.97 + 4.41
GIN+GSAT* 97.43" +1.77 97757 +£0.92 83707 +1.46 85557 +257 85.56' =193 83597 +256
PNA+GSAT 93.77+390 99.07° 050 84.68" +1.06 83.34"+2.17 86.94" £4.05 88.667 +2.44
PNA+GSAT* 89.04 +4.92 96.22" +2.08 88.54" +0.72 9055 +1.48 89.79" +1.91 89.547 +1.78

Table 2. Prediction Performance (Acc.). The bold font highlights the inherently interpretable methods that significantly outperform the
corresponding backbone model, GIN or PNA, when the mean-1*std of a method > the mean of its corresponding backbone model.

SPURIOUS-MOTIF

MoLHIv (AUC) GRAPH-SST2  MNIST-75sp

b=10.5 b=0.7 b=10.9
. . GIN 76.69 £ 1.25 82.73+£0.77  95.74+£0.36  3987Tx£1.30 39.04 £ 1.62  38.57 £ 2.31
Predlctlon - IB-SUBGRAPH 76.43 = 2.65 8299+ 0.67 93.10+1.32 54.36+7.09 4851=L576 46.19+5.63
o DIR 76.34 £+ 1.01 82.324+0.85  88.51+257 45.49+381 41.13+2.62  37.61 £ 2.02
GIN+GSAT 76.47 £ 1.53 8295+ 0.58 96.24+0.17 52.74+4.08 49.12+3.29 44.22+5.57
GIN+GSAT" 76.16 £ 1.39 82.57+£0.71 96.21 £0.14 46.62+2.95 41.26£3.01 39.74+2.20
PNA (NO SCALARS) 78.91 £ 1.04 79.87+1.02 87.20%£5.61 68.15£239 66.35£3.34 61.40 % 3.56
PNA+GSAT 80.24 + 0.73 80.92 +0.66 93.96+0.92 68.744+2.24 64.38+3.20 57.01 £ 2.95
PNA+GSAT" 80.67 = (0.95 82.81+0.56 9238+144 69.72+1.93 67.31 =186 61.49+% 3.46




GSAT | Experiment

since the GSAT dose not make any assumptions on the selected subgraphs,
the improvement of GSAT can be even more
if the true subgraph are dis-connected or vary in sizes.

46



Outline

* Background
* A review of existing methods
* Recent advances that go beyond the post-hoc manner

* Summary
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Summary

A review of 4-class explanation methods
* Classl|: Gradients/Features-Based Methods

* Class2: Perturbation-Based Methods

* Class3: Surrogate-based methods

* Class4: Decomposition-based methods

Future directions

* go beyond the post-hoc manner

* model-level explanation

* explain for KG reasoners and corresponding analysis
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interpretable v.s. explainable

* We consider a model to be “interpretable” if the model itself can
provide humanly understandable interpretations of its predictions
* Note that such a model is no longer a black box to some extent.
* For example, a decision tree model is an “interpretable” one.

* Meanwhile, an “explainable” model implies that model is still a black box
* its predictions could potentially be understood by post-hoc techniques.

Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022. 51



Taxonomy

TABLE 1
A comprehensive analysis of different explanation methods. Here “Type” indicates what type of explanations are provided, “Learning” denotes
whether learning procedures are involved, “Task” means what tasks each method can be applied to, “Target” indicates the targets of explanations,
“Black-box” means if the trained GNNs are treated as a black-box during the explanation stage, “Flow” denotes the computational flow for
explanations, and “Design” indicates whether an explanation method has specific designs for graph data. Note that GC denotes graph
classification, NC denotes node classification, N means nodes, E means edges, NF represents node features, and Walk indicates graph walks.

Method TYPE LEARNING TASK TARGET BLACK-BOX FLow DESIGN
SA [54], [55] Instance-level X GC/NC N/E/NF X Backward X
Guided BP [54] Instance-level X GC/NC N/E/NF X Backward X
CAM [55] Instance-level X GC N X Backward X
Grad-CAM [55] Instance-level X GC N X Backward X
GNNExplainer [46] Instance-level v GC/NC E/NF v Forward v
PGExplainer [47] Instance-level v/ GC/NC E X Forward 4
GraphMask [57] Instance-level v GC/NC E X Forward v
ZORRO [56] Instance-level X GC/NC N/NF v Forward v
Causal Screening [58] Instance-level X GC/NC E v Forward 4
SubgraphX [48] Instance-level v GC/NC  Subgraph v Forward 4
LRP [54], [59] Instance-level X GC/NC N X Backward X
Excitation BP [55] Instance-level X GC/NC N X Backward X
GNN-LRP [60] Instance-level X GC/NC Walk X Backward v
GraphLime [61] Instance-level v NC NF v Forward X
RelEx [62] Instance-level v NC N/E v Forward v
PGM-Explainer [63] Instance-level v GC/NC N v Forward v
XGNN [45] Model-level v GC Subgraph 4 Forward 4

Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.



Preliminaries | mutual information

* the mutual information (MI) of two random variables

is 2 measure of the mutual dependence between the two variables.

HX) H(Y)

« [(X;Y) = H(X) — H(X|Y)
« [(X;Y) = H(Y) — H(Y|X)
« [(X;Y) = H(X) + HY) — HX,Y)

H(X.Y)

https://en.wikipedia.org/wiki/Mutual information
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Preliminaries | mutual information

* the mutual information (MI) of two random variables

is a measure of the mutual dependence between the two variables.

* definition: I(X;Y) = I(Y; X) = D, (p(x, y)|[p(x)®p (¥))
, , . . _ p(x,y)
* discrete variables:  I(X;Y) = X, ey Xxex (%, y)log(p(x)p(y))
. , : . VY — p(xy)
continuous variables: 1(X;Y) fY fXP(X, y)log(p(x)p(y))

https://en.wikipedia.org/wiki/Mutual information o



https://en.wikipedia.org/wiki/Mutual_information

Preliminaries | mutual information

« [(X;Y) = H(X) — H(X|Y)
« [(X;Y) = H(Y) — H(Y|X)
« [(X;Y) = H(X) + HY) — HX,Y)

H(x) = —xlog,(x)

H(X) H(Y)

HX)

0.5

HIX.Y) % 5 1

0.
PrX=1)
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The existing post-hoc methods | problems

Post-hoc methods just perform one-step projection
to the information-constrained space (Q)

cons
* always suboptimal (low accuracy)
* sensitive to the pre-trained model (high variance)

the pretrain model

f()* O gp* optimal solution fél (G) ) e \
) Maximizing

I(fo(G);Y)

f5.(G) initial predictor

féi © g;. one-step proj.

the learned projectio
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Graph information bottleneck (GIB)

D=(X,A) - (GNN) - Z & Y

y Y': The target, D: The input data (= (A, X))
A: The graph structure, X: The node features
Z: The representation

N \ » T optimal Z .
b + % overfitting | Graph Information Bottleneck:

W
|

A
7. irrelevant info. i GIB (D Y7 = | (Y 7 | BI(D 7]
FH minimal sufficient info. e

Figure 1: Graph Information Bottleneck is to optimize the representation Z to capture the minimal sufficient
information within the input data D = (A, X)) to predict the target Y. D includes information from both the
graph structure A and node features X. When Z contains irrelevant information from either of these two sides,
it overfits the data and is prone to adversarial attacks and model hyperparameter change. €2 defines the search
space of the optimal model P(Z|D). I(-; -) denotes the mutual information [17].

Graph Information Bottleneck. NeurlPS 2020. 57



The proposed method | extractor

G

g

fo

~Q

A 4

|. obtain the node embeddings (representation)

GNN(G) » H € RN*PD

2. obtain the edge embeddings

Hedge — {[hlrhj] eij € 8}

3. obtain the edge probabilities (importance)

Pedge — MLP(Hedge)

4. obtain the sampled graph G with random noise
a;; ~ Bernoulli(p;; + u)
A, = a®A € RV*N
Gs = (45, X)
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The proposed method | extractor

\

G Jo
CExtractorg, o~ Bem(p)
(@) onN_J(Edge Emb
______________ Share Param =~
: MLPy  Jj&—{Graph Emb
\ Predictor fp
9¢ fo | —
G | G Y |

HX)

0.5

0.5
PrX=1)

m(;n —I1(Gg;Y) —I—[ﬂI(GS; G)], s.t. Gg ~ g4(G)

v

[(Gs; G) < Eg [KL(Py(Gs|G)][Q(Gs))]

KL(P4(Gs|G)||Q(Gs)) = )
Puv — Puv
Z Puv lOg " + (1 — puw) log T, + c(n,r).

(u,v)ER
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The proposed method | predictor

G

: Extractor 9o

@-Can -

-----------------

m(gn[—I(G'S;Y)]—I— BI(Gs; G), st. Gg ~ g4(G)

MLPy | f v
! I(Gs;Y) > Eggy logPe(Y|Gs)| + H(Y)

- e U . e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

=~

v

classification loss, e.g., cross entropy
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Experiment

Table 5. Ablation study on 3 and stochasticity in GSAT (GIN as the
backbone model) on Spurious-Motif. We report both interpretation
ROC AUC (top) and prediction accuracy (bottom).

SPURIOUS-MOTIF b=0.5 b=0.7 b=0.9

GSAT 79.81 4+ 3.98 74.07 + 5.28 71.97 + 4.41
GSAT-8 =0 66.00 & 11.04 65.92 £+ 3.28 66.31 + 6.82
GSAT-NOSTOCH 59.64 + 5.33 55.78 + 2.84 55.27 + 7.49
GSAT-NOSTOCH-8 = 0 63.37 + 12.33 60.61 4+ 10.08 66.19 + 7.76
GIN 39.87 + 1.30 39.04 + 1.62 38.57 + 2.31
GSAT 51.86 4+ 5.51 49.12 + 3.29 44.22 + 5.57
GSAT-8 =0 45.97 + 8.37 49.67 + 7.01 49.84 + 5.45
GSAT-NOSTOCH 40.34 4+ 2.77 41.90 + 3.70 37.98 + 2.64
GSAT-NOSTOCH-8 = 0 43.41 + 8.05 45.88 4+ 9.54 42.25 + 9.77

30

0] — Info. Constraint (Eq.9)

— Info. Constraint (Eq.9)

Intrepretation ROC AUC

Classification Accuracy (%)

—— {1 Norm Regularization —— {4 Norm Regularization

0.9/1e-5 0.8/1e-4 0.7/5e-4 0.6/1¢ 14/1e-2 0.3/5e-2 0.2/1e-1  0.1/1 0.9/1e-5 0.8/1e-4 0.7/5e-4 0.6/1e-3 0.5 3 0.4/1e2 0.3/5e-2 0.2/1e 0.1/1

r/A r/A
Figure 7. Comparison between (a) using the information constraint
in Eq. (9) and (b) replacing it with £;-norm. Results are shown for
Spurious-Motif b = 0.5, where 7 is tuned from 0.9 to 0.1 and the
coefficient of the /1-norm \; is tuned from le-5 to 1.

graph information bottleneck (GIB) -
stochasticity (gumbel trick) -
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Experiment

Table 4. Direct comparison (Acc.) with invariant learning methods
on the ability to remove spurious correlations, by applying the

backbone model used in (Wu et al., 2022).

SPURIOUS-MOTIF b=0.5 b=0.7 b=10.9
ERM 39.69+1.73  3893+1.74  33.61+ 1.02
V-REX 39.43+2.69  39.084+1.56  34.81 4+ 2.04
IRM 41.30+1.28  40.16 +1.74  35.12+2.71
DIR 45.50 +2.15  43.36+1.64  39.87 + 0.56
GSAT 53.27T +5.12 56.507 £3.96 53.117 +4.64
GSAT* 43.27+4.58 4251 +5.32 45.761 4+ 5.32

\ ’

The environment
may contain spurious
correlation with Y

Figure 6. G5 determines Y. However, the environment features in
G\ G's may contain spurious (backdoor) correlation with Y.

Theorem 4.1. Suppose each G contains a subgraph G
such that Y is determined by G in the sense that Y =
F(G%) + € for some deterministic invertible function f with
randomness e that is independent from . Then, for any
B € [0,1], Gs = G% maximizes the GIB I (Gg;Y) —
BI (Gs; G), where G g € Gsub(G)-

GSAT can remove spurious correlations in the training data -

* mainly due to the injecting stochasticity
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