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Background | graph learning

However, only powerful is not enough

Graph data 𝐷 → GNN 𝑓 → representation 𝑍 → 2𝑌 ⟷ 𝑌

vectornode encode

𝑓: 𝑖 → ℝ!

ℝ!
node representation 𝑍"

i
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Background | motivation
node-level task: requires relevant nodes

• e.g., node classification

link-level task: requires relevant paths
• e.g., link prediction

graph-level task: requires relevant subgraphs
• e.g., graph classification
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Background | motivation

Core problem:
how to provide more accurate interpretation without sacrificing the accuracy?

an important property to trustworthy ML
e.g. identifying the functional groups in a molecule

the learned representation and graph data
are usually highly entangled

InterpretablePowerful

Graph data 𝐷 → GNN 𝑓 → representation 𝑍 → 2𝑌 ⟷ 𝑌

i.e., to approximate 𝑌 by 2𝑌 i.e., which parts in 𝐷 contribute to 2𝑌
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Background | motivation

Proposed

Baseline

Graph classification Image classification

The proposed method can provide the more accurate interpretation
• at the same time, it is not harmful to the performance, and even boost it
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• the mutual information (MI) of two random variables is a measure of 
the mutual dependence between the two variables.

• definition: 𝐼 𝑋; 𝑌 = 𝐼 𝑌; 𝑋 = 𝐷!"(𝑝 𝑥, 𝑦 ||𝑝 𝑥 ⨂𝑝(𝑦))

• discrete variables: 𝐼 𝑋; 𝑌 = ∑#∈%∑&∈' 𝑝 𝑥, 𝑦 log( ( &,#
( & ((#)

)

• continuous variables: 𝐼 𝑋; 𝑌 = ∫% ∫' 𝑝 𝑥, 𝑦 log( ( &,#
( & ((#)

)

Preliminaries | mutual information

https://en.wikipedia.org/wiki/Mutual_information
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Preliminaries | mutual information

• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌
• 𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋
• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

𝐻 𝑥 = −𝑥𝑙𝑜𝑔!(𝑥)
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The existing post-hoc methods

step1: obtain the model parameter 2𝜃
• i.e., the predictor

step2: optimize the subgraph extractor 2𝜙
• reducing the MI 𝐼 𝐺; /𝑌 − 𝐼(𝐺!; /𝑌)
• with designed constraint (e.g., size, connectivity)

For example:
𝑓>?

𝑔>@

𝐺 2𝑌 𝑌

𝑓>?
𝐺A 2𝑌 𝑌𝐺

fixed
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The existing post-hoc methods | problems

Observation: (under-fitting)
the interpretation is sub-optimal and the training loss keeps high

interpretation performance training loss
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The existing post-hoc methods | problems
interpretation performance training loss

Observation: (over-fitting)
The overfitting problems are severe and common

However, it is hard to have the ground truth interpretation labels in practice🤔 15



The existing post-hoc methods | problems

Post-hoc methods just perform one-step projection 
to the information-constrained space (Ω)

cons
• always suboptimal (low accuracy)
• sensitive to the pre-trained model (high variance)

the pretrain model

the learned projection
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The existing post-hoc methods | problems

(post-hoc) reducing the MI 𝐼 𝐺; 2𝑌 − 𝐼(𝐺A; 2𝑌)is not good enough

a joint training of 𝑓>? ∘ 𝑔>@ might be better🤔

𝑓"# ∘ 𝑔"$

𝑔>@ 𝑓>?
𝐺A 2𝑌 𝑌𝐺
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Graph information bottleneck (GIB)

Graph Information Bottleneck. NeurIPS 2020.

D=(X,A)→ (GNN) → Z↔ Y
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not impose any potentially biased constraints 
• e.g., graph size or connectivity (adopted by other works)

inspired by the GIB, this work uses
information constraint to select label-relevant subgraph

𝐺A 2𝑌 𝑌𝐺

Graph information bottleneck (GIB)
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𝐼(𝐺"; 𝐺) ↓ 𝐼(𝐺"; 𝑌) ↑



The proposed method

𝑔@ 𝑓?
𝐺A 2𝑌 𝑌𝐺

joint training

𝐺

𝐺A2𝑌

𝑔@

𝑓?
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The proposed method | extractor

𝑔@ 𝑓?
𝐺A 2𝑌 𝑌𝐺

𝐺

𝐺A

𝑔@ 1. obtain the node embeddings (representation)

𝐺𝑁𝑁 𝐺 → 𝑯 ∈ ℝ$×&

2. obtain the edge embeddings

𝑯'()' = { 𝒉* , 𝒉+ : 𝑒*+ ∈ ℇ}

3. obtain the edge probabilities (importance)

𝑷'()' = 𝑀𝐿𝑃(𝑯'()')

4. obtain the sampled graph 𝐺! with random noise

𝛼*+ ~ Bernoulli(𝒑*+ + 𝑢)
𝐴- = 𝛼⨀𝐴 ∈ ℝ$×$

𝐺- = (𝐴- , 𝑋) 22



The proposed method | extractor

𝑔@ 𝑓?
𝐺A 2𝑌 𝑌𝐺

𝐺

𝐺A

𝑔@
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The proposed method | predictor

𝑔@ 𝑓?
𝐺A 2𝑌 𝑌𝐺

𝐺

𝐺A

𝑔@

2𝑌 𝑓?
classification loss, e.g., cross entropy
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Full learning objective

𝑔#$
𝑓#%

𝑔@ 𝑓?
𝐺A 2𝑌 𝑌𝐺

joint training
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Further interpretation

GSAT decreases the information from the input graphs
• with injecting stochasticity for all edges

GSAT can learn to reduce such stochasticity on the task-relevant subgraphs
• when 𝑝GH → 1, such edge (𝑒GH ∈ ℇ) is “invariant” and provides interpretation

26

𝐺 𝐺A 𝑌



Outline
• Background

• The existing methods

• The proposed method

• Experiment

• Summary and discussion

27



Experiment

Interpretation👍

Prediction👍
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Experiment

GSAT can remove spurious correlations in the training data👍
• mainly due to the injecting stochasticity
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Experiment

graph information bottleneck (GIB)👍
stochasticity (gumbel trick)👍
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Experiment

since the GSAT dose not make any assumptions on the selected subgraphs,
the improvement of GSAT can be even more

if the true subgraph are dis-connected or vary in sizes.
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Summary

First, the GIB frees GSAT from any potentially biased assumptions 
• which are adopted in previous methods

Second, GSAT can provably remove spurious correlations in the training data 
• by reducing the information from the input graph

Third, GSAT can cooperate with the pre-trained model if provided
• GSAT may further improve both of its interpretation and prediction accuracy
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Q&A
Thanks for your attention!
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