Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism

Presenter: Zhanke Zhou 2022. 06. 30

About the paper

Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism

- Authors: Siqi Miao, Miaoyuan Liu, Pan Li
- Conference: ICML 2022
- Affiliation: Department of Computer Science, Purdue University
- Paper: https://arxiv.org/pdf/2201.12987.pdf
- Code: https://github.com/Graph-COM/GSAT

Outline

- Background
- The existing methods
- The proposed method
- Experiment
- Summary and discussion

Background | graph learning

Background | graph learning

Graph data $D \to \text{GNN} f \to \text{representation} Z \to \tilde{Y} \leftrightarrow Y$

However, only powerful is not enough

Background | motivation

node-level task: requires relevant nodes

• e.g., node classification

link-level task: requires relevant paths

• e.g., link prediction

graph-level task: requires relevant subgraphs

• e.g., graph classification

Background | motivation

Graph data $D \to \text{GNN} f \to \text{representation} Z \to \tilde{Y} \leftrightarrow Y$

i.e., to approximate Y by \tilde{Y}

the learned representation and graph data are usually highly entangled

Interpretable

i.e., which parts in D contribute to \tilde{Y}

an important property to trustworthy ML e.g. identifying the functional groups in a molecule

Core problem:

how to provide more accurate interpretation without sacrificing the accuracy?

Background | motivation

Graph classification

Image classification

The proposed method can provide the more accurate interpretation

• at the same time, it is not harmful to the performance, and even boost it

Outline

- Background
- The existing methods
- The proposed method
- Experiment
- Summary and discussion

Preliminaries | mutual information

- H(X) H(X|Y) H(Y|X) H(Y|X) H(Y|X)
- the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables.
- definition: • discrete variables: $I(X;Y) = I(Y;X) = D_{KL}(p(x,y)||p(x)\otimes p(y))$ • discrete variables: $I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log(\frac{p(x,y)}{p(x)p(y)})$
- continuous variables: $I(X;Y) = \int_{Y} \int_{X} p(x,y) \log(\frac{p(x,y)}{p(x)p(y)})$

Preliminaries | mutual information

- I(X;Y) = H(X) H(X|Y)
- I(X;Y) = H(Y) H(Y|X)
- I(X;Y) = H(X) + H(Y) H(X,Y)

The existing post-hoc methods

For example:

step I : obtain the model parameter $ilde{ heta}$

• i.e., the predictor

step2: optimize the subgraph extractor $ilde{\phi}$

- reducing the MI $I(G; \tilde{Y}) I(G_S; \tilde{Y})$
- with designed constraint (e.g., size, connectivity)

 $f_{\widetilde{ heta}} \circ g_{\widetilde{oldsymbol{\phi}}}$

Observation: (under-fitting)

the interpretation is sub-optimal and the training loss keeps high

The overfitting problems are severe and common

However, it is hard to have the ground truth interpretation labels in practice 😌

Post-hoc methods just perform one-step projection to the information-constrained space (Ω)

cons

- always suboptimal (low accuracy)
- sensitive to the pre-trained model (high variance)

(post-hoc) reducing the MI $I(G; \tilde{Y}) - I(G_s; \tilde{Y})$ is not good enough

a joint training of $f_{\widetilde{\theta}} \circ g_{\widetilde{\phi}}$ might be better \ref{g}

Outline

- Background
- The existing methods
- The proposed method
- Experiment
- Summary and discussion

Graph information bottleneck (GIB)

$\mathsf{D=}(\mathsf{X},\mathsf{A})\to(\mathsf{GNN})\to\mathsf{Z}\leftrightarrow\mathsf{Y}$

Y: The target, \mathcal{D} : The input data (= (A, X)) A: The graph structure, X: The node features Z: The representation

Graph Information Bottleneck: $\min_{\mathbb{P}(Z|\mathcal{D})\in\Omega} \operatorname{GIB}_{\beta}(\mathcal{D}, Y; Z) \triangleq [-I(Y; Z) + \beta I(\mathcal{D}; Z)]$

Figure 1: Graph Information Bottleneck is to optimize the representation Z to capture the minimal sufficient information within the input data $\mathcal{D} = (A, X)$ to predict the target Y. \mathcal{D} includes information from both the graph structure A and node features X. When Z contains irrelevant information from either of these two sides, it overfits the data and is prone to adversarial attacks and model hyperparameter change. Ω defines the search space of the optimal model $\mathbb{P}(Z|\mathcal{D})$. $I(\cdot; \cdot)$ denotes the mutual information [17].

Graph information bottleneck (GIB)

inspired by the GIB, this work uses information constraint to select label-relevant subgraph

$$\begin{array}{c|c} G & & G_S & & \widetilde{Y} & & Y \\ \hline I(G_s;G) \downarrow & I(G_s;Y) \uparrow \end{array}$$

Graph Information Bottleneck: $\min_{\mathbb{P}(Z|\mathcal{D})\in\Omega} \operatorname{GIB}_{\beta}(\mathcal{D}, Y; Z) \triangleq [-I(Y; Z) + \beta I(\mathcal{D}; Z)]$

$$\min_{\phi} -I(G_S; Y) + \beta I(G_S; G), \text{ s.t. } G_S \sim g_{\phi}(G)$$

not impose any potentially biased constraints

• e.g., graph size or connectivity (adopted by other works)

The proposed method

$$\min_{\phi} -I(G_S; Y) + \beta I(G_S; G), \text{ s.t. } G_S \sim g_{\phi}(G)$$

The proposed method | extractor

1. obtain the node embeddings (representation) $GNN(G) \rightarrow H \in \mathbb{R}^{N \times D}$

2. obtain the edge embeddings $\boldsymbol{H}_{edge} = \{ [\boldsymbol{h}_i, \boldsymbol{h}_j] : e_{ij} \in \mathcal{E} \}$

3. obtain the edge probabilities (importance) $P_{edge} = MLP(H_{edge})$

4. obtain the sampled graph G_s with random noise $\alpha_{ij} \sim \text{Bernoulli}(p_{ij} + u)$ $A_s = \alpha \odot A \in \mathbb{R}^{N \times N}$ $G_s = (A_s, X)$

The proposed method | extractor

 $g_{oldsymbol{\phi}}$

G

$$\min_{\phi} -I(G_S; Y) + \beta I(G_S; G), \text{ s.t. } G_S \sim g_{\phi}(G)$$

$$I(G_s; G) \leq \mathbb{E}_G \left[\text{KL}(\mathbb{P}_{\phi}(G_S|G) || \mathbb{Q}(G_S)) \right]$$

$$KL(\mathbb{P}_{\phi}(G_S|G) || \mathbb{Q}(G_S)) = (9)$$

$$\sum_{(u,v) \in E} p_{uv} \log \frac{p_{uv}}{r} + (1 - p_{uv}) \log \frac{1 - p_{uv}}{1 - r} + c(n, r).$$

The proposed method | predictor

$$\min_{\phi} -I(G_S; Y) + \beta I(G_S; G), \text{ s.t. } G_S \sim g_{\phi}(G)$$

$$I(G_s; G) \leq \mathbb{E}_G [\operatorname{KL}(\mathbb{P}_{\phi}(G_S|G)||\mathbb{Q}(G_S))] \qquad (g_{\widetilde{\phi}})$$

$$I(G_S; Y) \geq \mathbb{E}_{G_S, Y} [\log \mathbb{P}_{\theta}(Y|G_S)] + H(Y) \qquad (f_{\widetilde{\theta}})$$

 $\min_{\theta,\phi} -\mathbb{E}\left[\log \mathbb{P}_{\theta}(Y|G_S)\right] + \beta \mathbb{E}\left[\mathrm{KL}(\mathbb{P}_{\phi}(G_S|G)||\mathbb{Q}(G_S))\right]$

Further interpretation

$$\min_{\phi} -I(G_S; Y) + \beta I(G_S; G) \qquad G \qquad G_S \qquad Y$$

GSAT decreases the information from the input graphs

• with injecting stochasticity for all edges

GSAT can learn to reduce such stochasticity on the task-relevant subgraphs

• when $p_{ij} \rightarrow 1$, such edge $(e_{ij} \in \mathcal{E})$ is "invariant" and provides interpretation

Outline

- Background
- The existing methods
- The proposed method
- Experiment
- Summary and discussion

Spurious-motif **BA-2MOTIFS** MUTAG MNIST-75sp b = 0.5b = 0.7b = 0.9**GNNEXPLAINER** 67.35 ± 3.29 61.98 ± 5.45 59.01 ± 2.04 62.62 ± 1.35 62.25 ± 3.61 58.86 ± 1.93 PGEXPLAINER 84.59 ± 9.09 60.91 ± 17.10 69.34 ± 4.32 69.54 ± 5.64 72.33 ± 9.18 72.34 ± 2.91 72.06 ± 5.58 66.68 ± 6.96 GRAPHMASK 92.54 ± 8.07 62.23 ± 9.01 73.10 ± 6.41 73.06 ± 4.91 **IB-SUBGRAPH** 86.06 ± 28.37 91.04 ± 6.59 51.20 ± 5.12 57.29 ± 14.35 62.89 ± 15.59 47.29 ± 13.39 DIR 82.78 ± 10.97 64.44 ± 28.81 32.35 ± 9.39 78.15 ± 1.32 77.68 ± 1.22 49.08 ± 3.66 GIN+GSAT $98.74^{\dagger} \pm 0.55$ $99.60^{\dagger} \pm 0.51$ $83.36^{\dagger} \pm 1.02$ 78.45 ± 3.12 74.07 ± 5.28 71.97 ± 4.41 $97.43^{\dagger} \pm 1.77$ $97.75^{\dagger} \pm 0.92$ $83.70^{\dagger} \pm 1.46$ $85.55^{\dagger} \pm 2.57$ $85.56^{\dagger} \pm 1.93$ $83.59^{\dagger} \pm 2.56$ GIN+GSAT* $84.68^{\dagger} \pm 1.06$ $83.34^{\dagger} \pm 2.17$ $86.94^{\dagger} \pm 4.05$ $88.66^{\dagger} \pm 2.44$ $99.07^{\dagger} \pm 0.50$ PNA+GSAT 93.77 ± 3.90 $88.54^{\dagger} \pm 0.72$ $90.55^{\dagger} \pm 1.48$ $89.79^{\dagger} \pm 1.91$ $89.54^{\dagger} \pm 1.78$ $96.22^{\dagger} \pm 2.08$ PNA+GSAT* 89.04 ± 4.92

Table 1. Interpretation Performance (AUC). The <u>underlined</u> results highlight the best baselines. The **bold** font and **bold**^{\dagger} font highlight when GSAT outperform the means of the best baselines based on the mean of GSAT and the mean-2*std of GSAT, respectively.

Table 2. Prediction Performance (Acc.). The **bold** font highlights the inherently interpretable methods that significantly outperform the corresponding backbone model, GIN or PNA, when the mean-1*std of a method > the mean of its corresponding backbone model.

	MOLHIV (AUC)	GRAPH-SST2	MNIST-75sp	Spurious-motif		
				b = 0.5	b = 0.7	b = 0.9
GIN	76.69 ± 1.25	82.73 ± 0.77	95.74 ± 0.36	39.87 ± 1.30	39.04 ± 1.62	38.57 ± 2.31
IB-SUBGRAPH	76.43 ± 2.65	82.99 ± 0.67	93.10 ± 1.32	54.36 ± 7.09	48.51 ± 5.76	46.19 ± 5.63
DIR	76.34 ± 1.01	82.32 ± 0.85	88.51 ± 2.57	45.49 ± 3.81	41.13 ± 2.62	37.61 ± 2.02
GIN+GSAT	76.47 ± 1.53	82.95 ± 0.58	96.24 ± 0.17	52.74 ± 4.08	49.12 ± 3.29	44.22 ± 5.57
GIN+GSAT*	76.16 ± 1.39	82.57 ± 0.71	96.21 ± 0.14	46.62 ± 2.95	41.26 ± 3.01	39.74 ± 2.20
PNA (NO SCALARS)	78.91 ± 1.04	79.87 ± 1.02	87.20 ± 5.61	68.15 ± 2.39	66.35 ± 3.34	61.40 ± 3.56
PNA+GSAT	80.24 ± 0.73	80.92 ± 0.66	93.96 ± 0.92	68.74 ± 2.24	64.38 ± 3.20	57.01 ± 2.95
PNA+GSAT*	80.67 ± 0.95	82.81 ± 0.56	92.38 ± 1.44	69.72 ± 1.93	67.31 ± 1.86	61.49 ± 3.46

Interpretation 👍

Table 4. Direct comparison (Acc.) with invariant learning methods on the ability to remove spurious correlations, by applying the backbone model used in (Wu et al., 2022).

Spurious-motif	b = 0.5	b = 0.7	b = 0.9
ERM	39.69 ± 1.73	38.93 ± 1.74	33.61 ± 1.02
V-REX	39.43 ± 2.69	39.08 ± 1.56	34.81 ± 2.04
IRM	41.30 ± 1.28	40.16 ± 1.74	35.12 ± 2.71
DIR	45.50 ± 2.15	43.36 ± 1.64	39.87 ± 0.56
GSAT	$53.27^\dagger \pm 5.12$	$56.50^\dagger \pm 3.96$	$53.11^\dagger \pm 4.64$
GSAT*	43.27 ± 4.58	42.51 ± 5.32	$45.76^{\dagger} \pm 5.32$

Figure 6. G_S^* determines Y. However, the environment features in $G \setminus G_S^*$ may contain spurious (backdoor) correlation with Y.

Theorem 4.1. Suppose each G contains a subgraph G_S^* such that Y is determined by G_S^* in the sense that $Y = f(G_S^*) + \epsilon$ for some deterministic invertible function f with randomness ϵ that is independent from G. Then, for any $\beta \in [0,1], G_S = G_S^*$ maximizes the GIB $I(G_S;Y) - \beta I(G_S;G)$, where $G_S \in \mathbb{G}_{sub}(G)$.

mainly due to the injecting stochasticity

Table 5. Ablation study on β and stochasticity in GSAT (GIN as the backbone model) on Spurious-Motif. We report both interpretation ROC AUC (top) and prediction accuracy (bottom).

Spurious-motif	b = 0.5	b = 0.7	b = 0.9
GSAT GSAT- $\beta = 0$ GSAT-NoStoch GSAT-NoStoch- $\beta = 0$	$\begin{array}{c} 79.81 \pm 3.98 \\ 66.00 \pm 11.04 \\ 59.64 \pm 5.33 \\ 63.37 \pm 12.33 \end{array}$	$\begin{array}{c} 74.07 \pm 5.28 \\ 65.92 \pm 3.28 \\ 55.78 \pm 2.84 \\ 60.61 \pm 10.08 \end{array}$	$\begin{array}{c} 71.97 \pm 4.41 \\ 66.31 \pm 6.82 \\ 55.27 \pm 7.49 \\ 66.19 \pm 7.76 \end{array}$
GIN GSAT GSAT- $\beta = 0$ GSAT-NoStoch GSAT-NoStoch- $\beta = 0$	$\begin{array}{c} 39.87 \pm 1.30 \\ 51.86 \pm 5.51 \\ 45.97 \pm 8.37 \\ 40.34 \pm 2.77 \\ 43.41 \pm 8.05 \end{array}$	$\begin{array}{c} 39.04 \pm 1.62 \\ 49.12 \pm 3.29 \\ 49.67 \pm 7.01 \\ 41.90 \pm 3.70 \\ 45.88 \pm 9.54 \end{array}$	$\begin{array}{c} 38.57 \pm 2.31 \\ 44.22 \pm 5.57 \\ 49.84 \pm 5.45 \\ 37.98 \pm 2.64 \\ 42.25 \pm 9.77 \end{array}$

Figure 7. Comparison between (a) using the information constraint in Eq. (9) and (b) replacing it with ℓ_1 -norm. Results are shown for Spurious-Motif b = 0.5, where r is tuned from 0.9 to 0.1 and the coefficient of the ℓ_1 -norm λ_1 is tuned from 1*e*-5 to 1.

graph information bottleneck (GIB) 👍 stochasticity (gumbel trick) 👍

since the GSAT dose not make any assumptions on the selected subgraphs, the improvement of GSAT can be even more if the true subgraph are dis-connected or vary in sizes.

Outline

- Background
- The existing methods
- The proposed method
- Experiment
- Summary and discussion

First, the GIB frees GSAT from any potentially biased assumptions

• which are adopted in previous methods

Second, GSAT can provably remove spurious correlations in the training data

• by reducing the information from the input graph

Third, GSAT can cooperate with the pre-trained model if provided

• GSAT may further improve both of its interpretation and prediction accuracy

Related works

- I. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurIPS 2019.
- 2. Graph Information Bottleneck. NeurIPS 2020.
- 3. Parameterized Explainer for Graph Neural Network. NeurIPS 2020.
- 4. INTERPRETING GRAPH NEURAL NETWORKS FOR NLP WITH DIFFERENTIABLE EDGE MASKING. ICLR 2021.
- 5. GRAPH INFORMATION BOTTLENECK FOR SUBGRAPH RECOGNITION. ICLR 2021
- 6. DISCOVERING INVARIANT RATIONALES FOR GRAPH NEURAL NETWORKS. ICLR 2022.

