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Background | graph learning
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Background | graph learning

Graph data D — GNN f - representationZ —» Y <Y
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However, only powerful is not enough



Background | motivation

node-level task: requires relevant nodes
* e.g,node classification

ﬁ‘--]};mkm]m]]" . graph-level task: requires relevant subgraphs
i | * e.g., graph classification
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link-level task: requires relevant paths
* e.g,link prediction
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Background | motivation

Graph data D — GNN f — representationZ —» Y < Y

Powerful Interpretable
i.e., to approximate Y by ¥ i.e., which parts in D contribute to Y
the learned representation and graph data an important property to trustworthy ML
are usually highly entangled e.g. identifying the functional groups in a molecule

Core problem:
how to provide more accurate interpretation without sacrificing the accuracy?



Background | motivation

Graph classification Image classification
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The proposed method can provide the more accurate interpretation
* at the same time, it is not harmful to the performance, and even boost it

\

Baseline A\ 4 <
s ST m\ 1 93;%
s, W/

= A

e e D % . —‘{1
Proposed - 9% | ‘
b ﬁ




Outline

* Background

* The existing methods
* The proposed method
* Experiment

* Summary and discussion



Preliminaries | mutual information

H(X.Y)

* the mutual information (M) of two random variables is a measure of

the mutual dependence between the two variables.

* definition: I(X;Y) = I(Y; X) = D, (p(x, y)|[p(x)@p (¥))
, , . Uy p(x,y)
» discrete variables:  I(X;Y) = Y, cy Xyex P(, y)lOg(p(x)p(y))
. , . . VY — p(x,y)
continuous variables: I(X;Y) fy pr(X, y)log(p(x)p(y))

https://en.wikipedia.org/wiki/Mutual information "



https://en.wikipedia.org/wiki/Mutual_information

Preliminaries | mutual information

« [(X;Y) = H(X) — H(X|Y)
« [(X;Y) = H(Y) — H(Y|X)
« [(X;Y) = H(X) + HY) — HX,Y)

H(x) = —xlog,(x)
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The existing post-hoc methods

For example:

~Q

K
step|: obtain the model parameter 6 G| Y Y
* i.e,the predictor \

. fixed
step2: optimize the subgraph extractor ¢ ¥ P /5
* reducing the Ml I(G; 17) —1(Gg; V) G 1 G
* with designed constraint (e.g., size, connectivity)
fg°93

the interpretating system



The existing post-hoc methods | problems

interpretation performance training loss
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Observation: (under-fitting)
the interpretation is sub-optimal and the training loss keeps high



The existing post-hoc methods | problems

interpretation performance training loss
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Observation: (over-fitting)
The overfitting problems are severe and common

However, it is hard to have the ground truth interpretation labels in practice



Post-hoc methods just perform one-step projection
to the information-constrained space (Q)

cons
* always suboptimal (low accuracy)
* sensitive to the pre-trained model (high variance)

the pretrain model | )
for © g4+ optimal solution ‘fél (G) PP o § \
f; (G) initial predictor Maximizing
" - I(f4(G);Y)

féi © g;. one-step proj.

the learned projectio

The existing post-hoc methods | problems



The existing post-hoc
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methods | problems
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(post-hoc) reducing the Ml I(G; 17) — I(Gs; Y)is not good enough

a joint training of f o gg might be better &)
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Graph information bottleneck (GIB)

D=(X,A) - (GNN) - Z & Y

J Y': The target, D: The input data (= (A, X))
A: The graph structure, X: The node features
Z: The representation

N \ » T optimal Z .
b + % overfitting | Graph Information Bottleneck:

W
|

A
7. irrelevant info. i GIB (D Y7 = | (Y 7 | BI(D 7]
FH minimal sufficient info. e

Figure 1: Graph Information Bottleneck is to optimize the representation Z to capture the minimal sufficient
information within the input data D = (A, X) to predict the target Y. D includes information from both the
graph structure A and node features X. When Z contains irrelevant information from either of these two sides,
it overfits the data and is prone to adversarial attacks and model hyperparameter change. €2 defines the search
space of the optimal model P(Z|D). I(-; -) denotes the mutual information [17].

Graph Information Bottleneck. NeurlPS 2020. 19



Graph information bottleneck (GIB)

inspired by the GIB, this work uses
information constraint to select label-relevant subgraph

7 o . Graph Information Bottleneck:
G g GS Y B Y P

\M min GIBg(D,Y;2) = [-I1(Y;Z) + BI(D; Z)]
P(Z|D)e

1(Gg;G) 1(Gg;Y) T

m(gn —1(Gs;Y)+ BI(Gg;G), s.t. Gg ~ gqs(G)

not impose any potentially biased constraints
* e.g,graph size or connectivity (adopted by other works)




The proposed method
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joint training
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The proposed method | extractor

G 9o
f Extractor g4 a ~ Bern(p) \
» GNN |->{Edge Emb [ MLP; a):
Zlbdge Bmb = VLT AR\ ;
______________ ShaePam~___ | |04
: MLPy [¢—Graph Embje=— GNN | Gs
\ MPredictor fo )
G
9o fo _
G 1 G Y [+ Y

|. obtain the node embeddings (representation)

GNN(G) » H € RN*PD

2. obtain the edge embeddings

Hedge — {[hlrhj] eij € 8}

3. obtain the edge probabilities (importance)

Pedge — MLP(Hedge)

4. obtain the sampled graph G with random noise
a;; ~ Bernoulli(p;; + u)
A, = a®A € RV*N
Gs = (45, X)
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The proposed method | extractor

G 9o 0

0.5
PrX=1)

Extractor g
@':" GNN  j—{ Edge Emb

Share Param.

mc;n —I(Gs;Y )+ BI(Gs;G), s.t. Gg ~ g4 (G)

v

I(Gs; G) < Eg [KL(Py(Gs|G)][Q(Gs))]

v

KL(Py(Gs|G)||Q(Gs)) = )
Puv 1- Puv
Z Puv 10g + (1 = puv) log — T c(n,r).
g¢ fe (u,v)ER r 1—=r
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The proposed method | predictor

G J¢
m(gn —I1(Gs;Y)+ BI(Gs;G), s.t. Gg ~ g¢(G)

" MLP, J—{Graph Emb}—{ GNN_J(Gs \

:‘-Rr_e_(_ilc_:t_ql_'_fe _________________________________________ : I (GS; Y) > ]EGS,Y [log PO(Y|GS)] + H(Y)
Y f@ GS v

classification loss, e.g., cross entropy
9¢ fo | —
G Gy 7Y
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joint training

Full learning objective | 1

9 fo | —
G e %
m(gn —I(Ggs;Y)+ BI(Ggs;G), s.t. Gg ~ g¢(G)
I(Gs:G) < Eg [KL(P4(Gs|G)||Q(Gs))] (95)

1(Gs;Y) > Eq,y logPy(Y|Gs) + HY)  (fp)

min —E logPy(Y|Gs)] + BE [KL(Py(Gs|G)||Q(Gs))]




Further interpretation

m(bin—I(GS;Y)T ,BI(GS;G)l G Gs Y

GSAT decreases the information from the input graphs
* with injecting stochasticity for all edges

GSAT can learn to reduce such stochasticity on the task-relevant subgraphs
* when p;; — 1, such edge (e;; € €) is “invariant” and provides interpretation

26
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Experiment

Table 1. Interpretation Performance (AUC). The underlined results highlight the best baselines. The bold font and bold" font highlight
when GSAT outperform the means of the best baselines based on the mean of GSAT and the mean-2*std of GSAT, respectively.

SPURIOUS-MOTIF

BA-2MOTIFS MUTAG MNIST-75sp b—05 b—0.7 b=09
GNNEXPLAINER  67.35 4 3.29 61.98 + 5.45 59.01 + 2.04 62.62 + 1.35 62.25 + 3.61 58.86 4+ 1.93
PGEXPLAINER 84.59+9.09  60.91+17.10  69.34 + 4.32 69.54 + 5.64 72.33 +9.18 72.34 4+ 2.91
GRAPHMASK 92.54 + 8.07 62.23 4+ 9.01 73.10 + 6.41 72.06 + 5.58 73.06 + 4.91 66.68 + 6.96
. IB-SUBGRAPH 86.06 + 28.37  91.04 + 6.59 51.20 +5.12 57.294 14.35  62.89 + 15.59  47.29 + 13.39
Inte rpretation DIR 8278 £10.97 6444 +2881  3235+£9.39  T815+1.32  T7.68+122  49.08 £ 3.66
GIN+GSAT 98.74" + 0.55 99.60" + 0.51 83.361 +1.02 7845+3.12  T4.07+5.28 71.97 + 4.41
GIN+GSAT* 97.43" +1.77 97757 +£0.92 83707 +1.46 85557 +257 85.56' =193 83.597 +256
PNA+GSAT 93.77+390 99.07° +£0.50 84.68" +1.06 83.347+2.17 86.94" £4.05 88.667 +2.44
PNA+GSAT* 89.04 +4.92 96.22" +2.08 88547 +0.72 9055 +1.48 89.79" +1.91 89.547 +1.78

Table 2. Prediction Performance (Acc.). The bold font highlights the inherently interpretable methods that significantly outperform the
corresponding backbone model, GIN or PNA, when the mean-1*std of a method > the mean of its corresponding backbone model.

SPURIOUS-MOTIF

MoLHI1v (AUC) GRAPH-SST2  MNIST-75sp

b=10.5 b=0.7 b=10.9
. . GIN 76.69 £ 1.25 82.73+£0.77  95.74+£0.36  3987Tx1.30 39.04 £ 1.62  38.57 £ 2.31
Predlctlon - IB-SUBGRAPH 76.43 = 2.65 82,99+ 0.67  93.10+1.32 54.36+7.09 4851=L576 46.19+5.63
o DIR 76.34 £+ 1.01 82.324+0.85  88.51 4257 45.49+381 41.13+2.62  37.61 £ 2.02
GIN+GSAT 76.47 £ 1.53 8295+ 0.58 96.24+0.17 52.74+4.08 49.12+3.29 44.22+5.57
GIN+GSAT" 76.16 £ 1.39 82.57+£0.71 96.21 £0.14 46.62+2.95 41.26+3.01 39.74+2.20
PNA (NO SCALARS) 78.91 £ 1.04 7987 +1.02 87.20£5.61 68.15£239 66.35£3.34 61.40 % 3.56
PNA+GSAT 80.24 + 0.73 80.92 +0.66 93.96 +0.92 68.74 +2.24  64.38 4+ 3.20 57.01 £+ 2.95
PNA+GSAT" 80.67 = (0.95 82.81 +0.56 9238+144 69.72+1.93 67.31 =186 61.49+% 3.46




Experiment

Table 4. Direct comparison (Acc.) with invariant learning methods
on the ability to remove spurious correlations, by applying the

backbone model used in (Wu et al., 2022).

SPURIOUS-MOTIF b=0.5 b=0.7 b=10.9
ERM 39.69+1.73  3893+1.74  33.61+1.02
V-REX 39.43+2.69  39.084+1.56  34.81 4+ 2.04
IRM 41.30+1.28  40.16 £1.74  35.12+2.71
DIR 4550+ 2.15  43.36+1.64  39.87 + 0.56
GSAT 53.27T +5.12 56.507 +3.96 53.117 +4.64
GSAT* 43.27+4.58 4251 +5.32 45.761 4+ 5.32

\ ’

The environment
may contain spurious
correlation with Y

Figure 6. G5 determines Y. However, the environment features in
G\ G's may contain spurious (backdoor) correlation with Y.

Theorem 4.1. Suppose each GG contains a subgraph G
such that Y is determined by G in the sense that Y =
F(G%) + € for some deterministic invertible function f with
randomness e that is independent from . Then, for any
B € [0,1], Gs = G% maximizes the GIB I (Gg;Y) —
BI (Gs; G), where G g € Gsub(G)-

GSAT can remove spurious correlations in the training data -

* mainly due to the injecting stochasticity

29



Experiment

Table 5. Ablation study on 3 and stochasticity in GSAT (GIN as the
backbone model) on Spurious-Motif. We report both interpretation
ROC AUC (top) and prediction accuracy (bottom).

SPURIOUS-MOTIF b=0.5 b=0.7 b=0.9

GSAT 79.81 4+ 3.98 74.07 + 5.28 71.97 + 4.41
GSAT-8 =0 66.00 & 11.04 65.92 £+ 3.28 66.31 + 6.82
GSAT-NOSTOCH 59.64 + 5.33 55.78 + 2.84 55.27 + 7.49
GSAT-NOSTOCH-8 = 0 63.37 + 12.33 60.61 4+ 10.08 66.19 + 7.76
GIN 39.87 + 1.30 39.04 + 1.62 38.57 + 2.31
GSAT 51.86 4+ 5.51 49.12 + 3.29 44.22 + 5.57
GSAT-8 =0 45.97 + 8.37 49.67 + 7.01 49.84 + 5.45
GSAT-NOSTOCH 40.34 4+ 2.77 41.90 + 3.70 37.98 + 2.64
GSAT-NOSTOCH-8 = 0 43.41 + 8.05 45.88 4+ 9.54 42.25 + 9.77

30

0] — Info. Constraint (Eq.9)

— Info. Constraint (Eq.9)

Intrepretation ROC AUC

Classification Accuracy (%)

—— {1 Norm Regularization —— {4 Norm Regularization

0.9/1e-5 0.8/1e-4 0.7/5e-4 0.6/1e 14/1e-2 0.3/5e-2 0.2/1e-1  0.1/1 0.9/1e-5 0.8/1e-4 0.7/5e-4 0.6/1e-3 0.5 3 0.4/1e2 0.3/5e-2 0.2/1e 0.1/1

r/A r/A
Figure 7. Comparison between (a) using the information constraint
in Eq. (9) and (b) replacing it with £;-norm. Results are shown for
Spurious-Motif b = 0.5, where 7 is tuned from 0.9 to 0.1 and the
coefficient of the £1-norm \; is tuned from le-5 to 1.

graph information bottleneck (GIB) -
stochasticity (gumbel trick) -
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Experiment

since the GSAT dose not make any assumptions on the selected subgraphs,
the improvement of GSAT can be even more
if the true subgraph are dis-connected or vary in sizes.

31
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Summary

First, the GIB frees GSAT from any potentially biased assumptions
* which are adopted in previous methods

Second, GSAT can provably remove spurious correlations in the training data
* by reducing the information from the input graph

Third, GSAT can cooperate with the pre-trained model if provided
* GSAT may further improve both of its interpretation and prediction accuracy

33
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Q&A

Thanks for your attention!



