KGBench: Towards Understanding and Benchmarking Model Search for Knowledge Graph Embedding

Presenter: Zhanke Zhou

Advisors: Yongqi Zhang and Quanming Yao

2021.07.09

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
- Key takeaway

Background – Knowledge Graph (KG)

A knowledge graph

- Mainly describe real world entities and relations, organized in a graph
- Allows potentially interacting entities with each other

Preliminaries

- Graph representation: $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{F})$
- Entities ${\cal E}$
 - real world objects or concepts
- Relations ${\mathcal R}$
 - interactions between entities
- Facts ${\mathcal F}$
 - the basic unit in form of (h, r, t)
 - (head entity, relation, tail entity)

Applications KGQA:

Recommendation:

Background – Knowledge Graph Embedding (KGE)

- Knowledge Graph Embedding (KGE)
 - Encode entities and relations in KG into low-dimensional vectors space
 - while capturing nodes' and edges' connection properties

• Most KGE models define a scoring function f to estimate the plausibility of any fact (h, r, t) using their embeddings: f(h, r, t)

Background – Knowledge Graph Embedding (KGE)

- Training
 - S^+ : positive samples S^- : negative samples
 - Objectives: $\max f(S^+)$ and $\min f(S^-)$
- Inference
 - head/tail prediction (?, r, t)/(h, r, ?)
 - the missing tail is inferred as the entity that results in the highest score:

$$t = \operatorname*{argmax}_{e \in \mathcal{E}} f(\mathbf{h}, \mathbf{r}, \mathbf{e})$$

- Evaluation metrics
 - q: the **rank** of correct entity

$$MR = \frac{1}{|Q|} \sum_{q \in Q} q \qquad MRR = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{q} \qquad H@K = \frac{|\{q \in Q : q \le K\}|}{|Q|}$$

Machine learning on Knowledge Graph

For obtaining embeddings of entities and relations, and finishing KGE task (e.g., predict potential facts)

- the scoring function *f* is expected to discriminate positive/negative factual triples
- a sampling scheme is needed to generate negative samples S⁻
- a loss function *L* and regularization *r* are required for defining learning problem
- a **optimization** strategy is needed for convergence procedure

Considering the above 5 factors, we can formulate the KGE learning framework as:

Learning Framework of KGE

5 KGE components:

Component	Role	Inputs	Outputs	Example
Scoring function $f()$	Plausibility estimation	Factual triples	Scores for each triple	TransE / CP
Loss function $L()$	Learning problem definition	Scores and labels	Loss value	BCE / CE
Negative sampling	Budget tradeoff	Positive samples S^+	Negative samples S^-	Uniform
Regularization $r()$	Avoid overfitting	Learnable parameters	Regularization value	L2 / N3
Optimization	Convergence control	-	-	-

Learning Framework of KGE

Learning objective:

Training procedure of knowledge graph embedding

Input data: training triples S_{tra}

• step I: initialize learnable parameters w (embeddings / model weights)

repeat mini-batch training _ until convergence

- step2: sample negative triples $\tilde{S}_{(h,r,t)}(S^{-})$ for each positive triple $(h,r,t) \in S_{tra}(S^{+})$
- step3: f() forward inference to obtain *Scores* for triples in $\{(h, r, t)\} \cup \tilde{S}_{(h, r, t)}$
- step4: compute loss and regularization term w.r.t. L() and r()
- step5: backward propagation, and update w

Output: *w*

Review of Current KGE Models

	RESCAL	TransE	DistMult	ComplEx	ConvE
Valid. MRR	36.1	31.5	35.0	35.3	34.3
Emb. size	128 (-0.5)	512 (-3.7)	256 (-0.2)	256 (-0.3)	256 (-0.4)
🔈 Batch size	512 (-0.5)	128 (-7.1)	1024 (-0.2)	1024 (-0.3)	1024 (-0.4)
Y Train type	1vsAll (-0.8)	NegSamp -	NegSamp (-0.2)	NegSamp (-0.3)	1vsAll (-0.4)
😤 Loss	CE (-0.9)	CE (-7.1)	CE (-3.1)	CE (-3.8)	CE (-0.4)
B Optimizer	Adam (-0.5)	Adagrad (-3.7)	Adagrad (-0.2)	Adagrad (-0.5)	Adagrad (-1.5)
 Initializer 	Normal (-0.8)	XvNorm (-3.7)	Unif. (-0.2)	Unif. (-0.5)	XvNorm (-0.4)
Regularizer	None (-0.5)	L2 (-3.7)	L3 (-0.2)	L3 (-0.3)	L3 (-0.4)
Reciprocal	No (-0.5)	Yes (-9.5)	Yes (-0.3)	Yes (-0.3)	Yes –
Valid. MRR	46.8	22.6	45.4	47.6	44.3
Emb. size	128 (-1.0)	512 (-5.1)	512 (-1.1)	128 (-1.0)	512 (-1.2)
Batch size	128 (-1.0)	128 (-5.1)	1024 (-1.1)	512 (-1.0)	1024 (-1.3)
😤 Train type	KvsAll (-1.0)	NegSamp -	KvsAll (-1.1)	1vsAll (-1.0)	KvsAll (-1.2)
Z Loss	CE (-2.0)	CE (-5.1)	CE (-2.4)	CE (-3.5)	CE (-1.4)
Optimizer	Adam (-1.2)	Adagrad (-5.8)	Adagrad (-1.5)	Adagrad (-1.5)	Adam (-1.4)
Initializer	Unif. (-1.0)	XvNorm (-5.1)	Unif. (-1.3)	Unif. (-1.5)	XvNorm (-1.4)
Regularizer	L3 (-1.2)	L2 (-5.1)	L3 (-1.1)	L2 (-1.0)	L1 (-1.2)
Reciprocal	Yes (-1.0)	Yes (-5.9)	Yes (-1.1)	No (-1.0)	Yes –

			FB1	5k			WN	18			FB15k	-237			WN1	8RR			YAGO	03-10	
		H@1	H@10	MR	MRR	H@1	H@10	MR	MRR	H@1	H@10	MR	MRR	H@1	H@10	MR	MRR	H@1	H@10	MR	MRR
els	DistMult	73.61	86.32	173	0.784	72.60	94.61	675	0.824	22.44	49.01	199	0.313	39.68	50.22	5913	0.433	41.26	66.12	1107	0.501
poM r	ComplEx	<u>81.56</u>	90.53	34	0.848	94.53	95.50	3623	0.949	25.72	52.97	202	0.349	42.55	52.12	4907	0.458	<u>50.48</u>	70.35	1112	<u>0.576</u>
ositior	ANALOGY	65.59	83.74	126	0.726	92.61	94.42	808	0.934	12.59	35.38	476	0.202	35.82	38.00	9266	0.366	19.21	45.65	2423	0.283
ecomp	SimplE	66.13	83.63	138	0.726	93.25	94.58	759	0.938	10.03	34.35	651	0.179	38.27	42.65	8764	0.398	35.76	63.16	2849	0.453
nsor De	HolE	75.85	86.78	211	0.800	93.11	94.94	650	0.938	21.37	47.64	186	0.303	40.28	48.79	8401	0.432	41.84	65.19	6489	0.502
Ter	TuckER	72.89	88.88	39	0.788	94.64	95.80	510	<u>0.951</u>	25.90	53.61	162	0.352	42.95	51.40	6239	0.459	46.56	68.09	2417	0.544
	TransE	49.36	84.73	45	0.628	40.56	94.87	279	0.646	21.72	49.65	209	0.31	2.79	49.52	3936	0.206	40.57	67.39	1187	0.501
lodels	STransE	39.77	79.60	69	0.543	43.12	93.45	208	0.656	22.48	49.56	357	0.315	10.13	42.21	5172	0.226	3.28	7.35	5797	0.049
etric N	CrossE	60.08	86.23	136	0.702	73.28	95.03	441	0.834	21.21	47.05	227	0.298	38.07	44.99	5212	0.405	33.09	65.45	3839	0.446
Geom	TorusE	68.85	83.98	143	0.746	94.33	95.44	525	0.947	19.62	44.71	211	0.281	42.68	53.35	4873	0.463	27.43	47.44	19455	0.342
	RotatE	73.93	88.10	42	0.791	94.30	<u>96.02</u>	274	0.949	23.83	53.06	178	0.336	42.60	<u>57.35</u>	3318	0.475	40.52	67.07	1827	0.498
sls	ConvE	59.46	84.94	51	0.688	93.89	95.68	413	0.945	21.90	47.62	281	0.305	38.99	50.75	4944	0.427	39.93	65.75	2429	0.488
Mode	ConvKB	11.44	40.83	324	0.211	52.89	94.89	202	0.709	13.98	41.46	309	0.230	5.63	52.50	3429	0.249	32.16	60.47	1683	0.420
arning	ConvR	70.57	88.55	70	0.773	94.56	95.85	471	0.950	25.56	52.63	251	0.346	43.73	52.68	5646	0.467	44.62	67.33	2582	0.527
eep Le	CapsE	1.93	21.78	610	0.087	84.55	95.08	233	0.890	7.34	35.60	405	0.160	33.69	55.98	720	0.415	0.00	0.00	60676	0.000
õ	RSN	72.34	87.01	51	0.777	91.23	95.10	346	0.928	19.84	44.44	248	0.280	34.59	48.34	4210	0.395	42.65	66.43	1339	0.511
	AnyBUBI	81.09	87.86	288	0.835	94.63	95.96	233	0.951	24.03	48.93	480	0 324	44.93	55 97	2530	0.485	45.83	66.07	815	0.528

Motivation and Objective

Difficulties and Challenges

- . The choice of KGE model and configuration
 - usually in a time-consuming trial-and-error way
- 2. A fair comparison of model or strategy
 - due to the heterogeneity in implementation, training, and evaluation
- 3. Lacking understanding of KGE components
 - interaction, importance, and tunability are unclear

Ultimate objective of KGbench:

- Design an AutoML approach,
- for any given dataset,
- with requirements and limited budget,
- to search for the optimal KGE model and configuration

Search or jump	to		Pull requ	ests	ls
🖟 ibalazevic / Hyp	ER				
Search or jump	to	/	Pull requ	ests	ls
🛱 ttrouill / complex	¢				
Search or jump	to	/	Pull requ	ests	ls
📮 wencolani / Tran	sE				
Search or ju	ımp to			Pull	re
🖟 ibalazevic / n	nultirelati	ional-p	oincar	е	
<> Code 🕛 Is	ssues 👔) Pull requ	uests	\triangleright	Ac

Comparing with related works

KGbench

- Design space(s) for KGE: model (configuration) / dataset / task
- Deep insights and theoretical analysis of KGE components
- Efficient automatic search for optimal model and configuration

Outline

- Background
- Motivation
- Understanding of KGE components
 - Part I: Scoring Function f()
 - Part2: Loss Function L()
 - Part3: Negative Sampling S^-
 - •
- Searching experiments
- Key takeaway

PartI: Scoring Function f()

Category

- Triple-based (focus point)
 - geometric models \rightarrow need additional constraints
 - tensor decomposition models \rightarrow $\mbox{expressive}$
 - neural network models \rightarrow more prone to overfitting
- Path / (Sub) Graph-based
 - utilize observable topological features
- Rule-based
 - logical rule mining

Model	Ent. & Rel. embed.	Scoring Function $f_r(h, t)$
RotatE [24]	$\mathbf{h},\mathbf{t}\in\mathbb{C}^{d}$, $\mathbf{r}\in\mathbb{C}^{d}$	$\ \mathbf{h} \circ \mathbf{r} - \mathbf{t}\ $
TorusE [15]	$[\mathbf{h}], [\mathbf{t}] \in \mathbb{T}^n$, $[\mathbf{r}] \in \mathbb{T}^n$	$\min_{(x,y)\in ([h]+[r])\times [t]} \ x-y\ _i$
SimplE [48]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^{a}$, $\mathbf{r}, \mathbf{r}' \in \mathbb{R}^{a}$	$\frac{1}{2} \left(\mathbf{h} \circ \mathbf{rt} + \mathbf{t} \circ \mathbf{r't} \right)$
TuckER [52]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{a}_{e}$, $\mathbf{r}\in\mathbb{R}^{a}_{r}$	$\mathcal{W} \times_1 \mathbf{h} \times_2 \mathbf{r} \times_3 \mathbf{t}$
ITransF [36]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{d}$, $\mathbf{r}\in\mathbb{R}^{d}$	$\left\ oldsymbol{lpha}_r^H \cdot \mathbf{D} \cdot \mathbf{h} + \mathbf{r} - oldsymbol{lpha}_r^T \cdot \mathbf{D} \cdot \mathbf{t} ight\ _{\ell}$
HolEx [40]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{d}$, $\mathbf{r}\in\mathbb{R}^{d}$	$\sum_{j=0}^{l} p\left(\mathbf{h}, \boldsymbol{r}; \boldsymbol{c}_{j}\right) \cdot \boldsymbol{t}$
CrossE [42]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{d}$, $\mathbf{r}\in\mathbb{R}^{d}$	$\sigma \left(\sigma \left(\mathbf{c}_{r} \circ \mathbf{h} + \mathbf{c}_{r} \circ \mathbf{h} \circ \mathbf{r} + \mathbf{b} \right) \mathbf{t}^{\top} \right)$
QuatE [25]	$\mathbf{h},\mathbf{t}\in\mathbb{H}^{d}$, $\mathbf{r}\in\mathbb{H}^{d}$	$\mathbf{h} \otimes \frac{\mathbf{r}}{ \mathbf{r} } \cdot \mathbf{t}$
SACN [44]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{d}$, $\mathbf{r}\in\mathbb{R}^{d}$	$g\left(\operatorname{vec}\left(\mathbf{M}\left(\mathbf{h},\mathbf{r}\right)\right)W\right)\mathbf{t}$
ConvKB [43]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{d}$, $\mathbf{r}\in\mathbb{R}^{d}$	concat $(g([\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}] * \omega)) \mathbf{w}$
ConvE [55]	$\mathbf{M}_h \in \mathbb{R}^{d_w \times d_h}, \mathbf{t} \in \mathbb{R}^d$ $\mathbf{M}_r \in \mathbb{R}^{d_w \times d_h}$	$\sigma\left(\operatorname{vec}\left(\sigma\left(\left[\mathbf{M}_{h};\mathbf{M}_{r}\right]\ast\boldsymbol{\omega}\right)\right)\mathbf{W}\right)\mathbf{t}$
DihEdral [31]	$\mathbf{h}^{(l)}, \mathbf{t}^{(l)} \in \mathbb{R}^2$ $\mathbf{R}^{(l)} \in \mathbb{D}_K$	$\sum_{l=1}^L \mathbf{h}^{(l)\top} \mathbf{R}^{(l)} \mathbf{t}^{(l)}$
HAKE [19]	$\mathbf{h}_m, \mathbf{t}_m \in \mathbb{R}^d, \mathbf{r}_m \in \mathbb{R}^d_+ \\ \mathbf{h}_p, \mathbf{r}_p, \mathbf{t}_p \in [0, 2\pi)^d$	$\frac{-\ \mathbf{h}_{m} \circ \mathbf{r}_{m} - \mathbf{t}_{m}\ _{2} - \lambda \ \sin\left(\left(\mathbf{h}_{p} + \mathbf{r}_{p} - \mathbf{t}_{p}\right)/2\right)\ _{1}$
MuRP [29]	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{B}_c^d, b_h, b_t \in \mathbb{R}$	$-d_{\mathbb{B}}\left(\mathbf{h}^{(r)},\mathbf{t}^{(r)}\right)^{2}+b_{s}+b_{o}$
AttH [30]	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{B}_c^d, b_h, b_t \in \mathbb{R}$	$-d_{\mathbb{B}}^{c_{T}}\left(Q(h,r),\mathbf{e}_{t}^{H}\right)^{2}+b_{h}+b_{t}$
LowFER [53]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d, \mathbf{r} \in \mathbb{R}^d$	$\left(\mathbf{S}^k \operatorname{diag}\left(\mathbf{U}^T \mathbf{h}\right) \mathbf{V}^T \mathbf{r}\right)^T \mathbf{t}$

[3]

PartI: Scoring Function f()

Questions to answer for developing a novel f

- I) which representation space to choose
- which encoding model to use for modeling relational interactions (encoder)
- 3) how to measure the plausibility of triplets in a specific space (decoder)
- 4) whether to utilize auxiliary information

KGbench: $f(h, r, t) = \delta(\phi(h, r), t)$ decoupling and re-combination of existing f

- Real/complex vector space
- f is the combination of candidate ϕ and δ
- Not requiring additional information

model	$\phi(oldsymbol{h},oldsymbol{r})$	shared r^{-1}	$\mid \delta(oldsymbol{v},oldsymbol{t}) \mid$
TransE [2]	$oldsymbol{v}=oldsymbol{h}+oldsymbol{r}$	$ig oldsymbol{r}^{-1}=-oldsymbol{r}$	$ -\ oldsymbol{v}-oldsymbol{t}\ _1 $
RotatE [13]	$ig oldsymbol{v} = oldsymbol{h} \circ oldsymbol{r} = [oldsymbol{h}_{re}oldsymbol{r}'_{re} - oldsymbol{h}_{im} \cdot oldsymbol{r}'_{im}, oldsymbol{h}_{re}oldsymbol{r}'_{im} + oldsymbol{h}_{im}oldsymbol{r}'_{re}]$ with $[oldsymbol{h}_{re}, oldsymbol{h}_{im}] = oldsymbol{h}, [oldsymbol{r}'_{re}, oldsymbol{r}'_{im}] = rac{[oldsymbol{r}_{re}, oldsymbol{r}_{im}]}{\sqrt{oldsymbol{r}^2_{re} + oldsymbol{r}^2_{im}}}$ and $[oldsymbol{r}_{re}, oldsymbol{r}_{im}] = oldsymbol{r}$	$\left \boldsymbol{r}^{-1} = \operatorname{conj}(\boldsymbol{r}) \right $	$-\ oldsymbol{v}-oldsymbol{t}\ _{c1}$
DistMult [17]	$oldsymbol{v}=oldsymbol{h}\cdotoldsymbol{r}$	$ig oldsymbol{r}^{-1} = oldsymbol{r}$	$ig \langle oldsymbol{v},oldsymbol{t} angle ig $
ComplEx [14]	$oldsymbol{v} = [oldsymbol{h}_{re}oldsymbol{r}_{re} - oldsymbol{h}_{im}oldsymbol{r}_{im}, oldsymbol{h}_{re}oldsymbol{r}_{im} + oldsymbol{h}_{im}oldsymbol{r}_{re}]$ with $[oldsymbol{h}_{re},oldsymbol{h}_{im}] = oldsymbol{h}$ and $[oldsymbol{r}_{re},oldsymbol{r}_{im}] = oldsymbol{r}$	$\left oldsymbol{r}^{-1} = \operatorname{conj}(oldsymbol{r}) ight $	$\langle oldsymbol{v},oldsymbol{t} angle$
BLM [20]	$oldsymbol{v}=oldsymbol{h}oldsymbol{R}_{oldsymbol{r}}$	$ig oldsymbol{R}_{oldsymbol{r}^{-1}} = oldsymbol{R}_{oldsymbol{r}}^ op$	$\langle oldsymbol{v},oldsymbol{t} angle$
ConvE [4]	$oldsymbol{v} = \sigmaig(ext{vec}(\sigma([ar{oldsymbol{h}},ar{oldsymbol{r}}]*oldsymbol{\omega}))oldsymbol{W}ig)$	×	$\langle oldsymbol{v},oldsymbol{t} angle$
	•		

In progress

Part3: Negative Sampling S⁻

positive
$$(h, r, t) \rightarrow \text{negative} (\tilde{h}, r, t)$$
 or (h, r, \tilde{t})

Methods

- Uniform / Bernoulli sampling
- GAN-based (with additional parameters to learn)
- Cache(score)-based (NSCaching ICDE 2019)
- Bias/variance-based (SRNS NeurIPS 2020)

Efficient

Effective

Learning Objective:

optimization *<*

loss function

Importance weighting:

Self-contrast approximation:

scoring function

 $\min_{\mathbf{w}} \mathcal{L}(f(\cdot, \mathbf{w}), \mathcal{S}^+ \mathcal{S}^-) + \mathbf{r}(\mathbf{w}) \rightarrow \text{regularization}$

negative sampling

 $p(\bar{h}|(t,r)) = \frac{\exp(f(\bar{h},r,t))}{\sum_{h_i \in \hat{\mathcal{H}}_{(r,t)}} \exp(f(\bar{h}_i,r,t))}$

|4|

Outline

- Background
- Motivation
- Understanding of KGE components
 - •
 - Part4: Regularization r() [NeurIPS 2020]
 - Part5: Optimization
- Searching experiments
- Key takeaway

- r(): to avoid overfitting in KGE
 - trade off between expressiveness and complexity
- No general & promising regularization schemes
 - squared frobenius norm (L2 norm)
 - tensor nuclear 3-norm (N3 norm)
 - designed for CP-like tensor decomposition models

/
Learning Objective:
loss function
optimization $\leftarrow \min \mathcal{L}(f(\cdot, w), S^+, S^-) + r(w) \rightarrow regularization$
scoring function
negative sampling
$r_{FRO} = \ \boldsymbol{H}\ _{F}^{2} + \ \boldsymbol{T}\ _{F}^{2} + \sum_{j=1}^{ R } \ \boldsymbol{R}_{j}\ _{F}^{2}$
s $r_{N3} = \sum_{d=1}^{ D } (\ \boldsymbol{h}_{:d}\ _{3}^{3} + \ \boldsymbol{r}_{:d}\ _{3}^{3} + \ \boldsymbol{t}_{:d}\ _{3}^{3})$

Method	Scoring function $f_r(h, t)$	Constraints/Regularization	[8]
TransE [14]	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$	
TransH [15]	$-\ (\mathbf{h}-\mathbf{w}_r^\top\mathbf{h}\mathbf{w}_r)+\mathbf{r}-(\mathbf{t}-\mathbf{w}_r^\top\mathbf{t}\mathbf{w}_r)\ _2^2$	$\begin{split} \ \mathbf{h}\ _2 &\leq 1, \ \mathbf{t}\ _2 \leq 1\\ \mathbf{w}_r^\top \mathbf{r} / \ \mathbf{r}\ _2 &\leq \epsilon, \ \mathbf{w}_r\ _2 = 1 \end{split}$	
TransR [16]	$-\ \mathbf{M}_r\mathbf{h}+\mathbf{r}-\mathbf{M}_r\mathbf{t}\ _2^2$	$\begin{aligned} \ \mathbf{h}\ _{2} &\leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ \ \mathbf{M}_{r}\mathbf{h}\ _{2} &\leq 1, \ \mathbf{M}_{r}\mathbf{t}\ _{2} \leq 1 \end{aligned}$	r N H
TransD [50]	$-\ (\mathbf{w}_r\mathbf{w}_h^\top+\mathbf{I})\mathbf{h}+\mathbf{r}-(\mathbf{w}_r\mathbf{w}_t^\top+\mathbf{I})\mathbf{t}\ _2^2$	$\begin{split} \ \mathbf{h}\ _2 &\leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1\\ \ (\mathbf{w}_r \mathbf{w}_h^\top + \mathbf{I})\mathbf{h}\ _2 &\leq 1\\ \ (\mathbf{w}_r \mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2 &\leq 1 \end{split}$	7 [
TranSparse [51]	$ \begin{aligned} &-\ \mathbf{M}_r(\theta_r)\mathbf{h} + \mathbf{r} - \mathbf{M}_r(\theta_r)\mathbf{t}\ _{1/2}^2 \\ &-\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h} + \mathbf{r} - \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _{1/2}^2 \end{aligned} $	$\begin{split} \ \mathbf{h}\ _2 &\leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1\\ \ \mathbf{M}_r(\theta_r)\mathbf{h}\ _2 &\leq 1, \ \mathbf{M}_r(\theta_r)\mathbf{t}\ _2 \leq 1\\ \ \mathbf{M}_r^{\dagger}(\theta_r^{\dagger})\mathbf{h}\ _2 &\leq 1, \ \mathbf{M}_r^{2}(\theta_r^{2})\mathbf{t}\ _2 \leq 1 \end{split}$	(
TransM [52]	$-\theta_r \ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$	L L
ManifoldE [53]	$-(\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _2^2-\theta_r^2)^2$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$	
TransF [54]	$(\mathbf{h} + \mathbf{r})^{\top} \mathbf{t} + (\mathbf{t} - \mathbf{r})^{\top} \mathbf{h}$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$	Eve
TransA [55]	$-(\mathbf{h}+\mathbf{r}-\mathbf{t})^{\top}\mathbf{M}_{r}(\mathbf{h}+\mathbf{r}-\mathbf{t})$	$\begin{aligned} \ \mathbf{h}\ _{2} &\leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1\\ \ \mathbf{M}_{r}\ _{F} &\leq 1, [\mathbf{M}_{r}]_{ij} = [\mathbf{M}_{r}]_{ji} \geq 0 \end{aligned}$	

	1	WN18R	R	F	B15k-2	237	Y	AGO3-	-10
	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
RotatE	.476	.428	.571	.338	.241	.533	.495	.402	.670
MuRP	.481	.440	.566	.335	.243	.518	-	-	-
IAKE	.497	.452	.582	.346	.250	.542	.546	.462	.694
TuckER	.470	.443	.526	.358	.266	.544	-	-	-
CP	.438	.414	.485	.333	.247	.508	.567	.494	.698
RESCAL	.455	.419	.493	.353	.264	.528	.566	.490	.701
ComplEx	.460	.428	.522	.346	.256	.525	.573	.500	.703
CP-DURA	.478	.441	.552	.367	.272	.555	.579	.506	.709
RESCAL-DURA	.498	.455	.577	.368	.276	.550	.579	.505	.712
RESCAL-FRO	.397	.363	.452	.323	.235	.501	.474	.392	.628

Even worse performance when equipped with FRO regularizer

Duality-induced regularizer (DURA^[9], NeurIPS 2020)

- for an existing tensor factorization based model (primal),
- there is often another distance based model (dual) closely associated with it.

Tensor factorization based (TFB): $f_{TFB}(h_i, r_i, t_k) = Re(\overline{h}_i R_i t_k) = Re(\langle h_i \overline{R}_i, t_k \rangle)$ Distance based (DB): $f_{DB}(h_i, r_j, t_k) = -\|\boldsymbol{h}_i \boldsymbol{\overline{R}}_j - \boldsymbol{t}_k\|_2^2$ Notice that $f_{DB}(h_i, r_j, t_k) = 2Re(\boldsymbol{h}_i \boldsymbol{\overline{R}}_j \boldsymbol{t}_k) - \|\boldsymbol{h}_i \boldsymbol{\overline{R}}_j\|_2^2 - \|\boldsymbol{t}_k\|_2^2$ $=2f_{TFB}-\left\|\boldsymbol{h}_{i}\boldsymbol{\overline{R}}_{j}\right\|_{2}^{2}-\left\|\boldsymbol{t}_{k}\right\|_{2}^{2}$ Such that $\max f_{DB} = \min -f_{DB} = \min (-2f_{TFB} + \|h_i \overline{R}_j\|_2^2 + \|t_k\|_2^2)$ Derive the Basic DURA: $r_{B_DURA} = \sum_{i=1}^{n} \left(\left\| \boldsymbol{h}_i \overline{\boldsymbol{R}}_j \right\|_2^2 + \left\| \boldsymbol{t}_k \right\|_2^2 \right)$ $(h_i, r_i, t_k) \in S$

- Explanation of basic DURA
 - (felid, include, tigers)
 - (felid, include, lions)
- \rightarrow representation of tigers and lions should be similar

- (tigers, is, mammals)
- to predict (lions, is, mammals)?

(b) Without regularization.

- Basic DURA \rightarrow DURA
 - act on tails \rightarrow heads and tails

$$f_{TFB}(h_{i}, r_{j}, t_{k}) = Re(\bar{h}_{i}R_{j}t_{k}^{T}) \qquad f_{TFB}(h_{i}, r_{j}, t_{k}) = Re(\bar{t}_{k}R_{j}^{T}h_{i}^{T})$$

$$f_{DB}(h_{i}, r_{j}, t_{k}) = -\|h_{i}\overline{R}_{j} - t_{k}\|_{2}^{2} \qquad f_{DB}(h_{i}, r_{j}, t_{k}) = -\|t_{k}R_{j}^{T} - h_{i}\|_{2}^{2}$$

$$r = \sum_{(h_{i}, r_{j}, t_{k}) \in S} (\|h_{i}\overline{R}_{j}\|_{2}^{2} + \|t_{k}\|_{2}^{2}) \qquad r = \sum_{(h_{i}, r_{j}, t_{k}) \in S} (\|t_{k}R_{j}^{T}\|_{2}^{2} + \|h_{i}\|_{2}^{2})$$

Basic DURA:

$$r_{B_DURA} = \sum_{(h_i, r_j, t_k) \in S} (\|\boldsymbol{h}_i \overline{\boldsymbol{R}}_j\|_2^2 + \|\boldsymbol{t}_k\|_2^2)$$
DURA:

$$r_{DURA} = \sum_{(h_i, r_j, t_k) \in S} (\|\boldsymbol{h}_i \overline{\boldsymbol{R}}_j\|_2^2 + \|\boldsymbol{t}_k\|_2^2 + \|\boldsymbol{t}_k \boldsymbol{R}_j^T\|_2^2 + \|\boldsymbol{h}_i\|_2^2)$$

• Practical usage (in a weighted form)

$$\min \sum_{\substack{(e_i, r_j, e_k) \in \mathcal{S} \\ + \lambda [\lambda_1(\|\mathbf{h}_i\|_2^2 + \|\mathbf{t}_k\|_2^2) + \lambda_2(\|\mathbf{h}_i \overline{\mathbf{R}}_j\|_2^2 + \|\mathbf{t}_k \mathbf{R}_j^\top\|_2^2))], }$$

• Smaller dataset scale, larger improvement

		WN	18RR	FB15k-237				YAGO3-10							
	k	b	λ	λ_1	λ_2	k	b	λ	λ_1	λ_2	k	b	λ	λ_1	λ_2
СР	2000	100	1e-1	0.5	1.5	2000	100	5e-2	0.5	1.5	1000	1000	5e-3	0.5	1.5
ComplEx	2000	100	1e-1	0.5	1.5	2000	100	5e-2	0.5	1.5	1000	1000	5e-2	0.5	1.5
RESCAL	512	1024	1e-1	1.0	1.0	512	512	1e-1	2.0	1.5	512	1024	5e-2	1.0	1.0

• KG \rightarrow TKG (ICLR 2020)^[10]

$$\Omega^{3}(U, V, T; (i, j, k, l)) = \frac{1}{3} \left(\|u_{i}\|_{3}^{3} + \|u_{k}\|_{3}^{3} + \|v_{k} \odot t_{l}\|_{3}^{3} \right)$$

$$\Omega^{3}(U, V^{t}, V, T; (i, j, k, l)) = \frac{1}{3} \left(2\|u_{i}\|_{3}^{3} + 2\|u_{k}\|_{3}^{3} + \|v_{j}^{t} \odot t_{l}\|_{3}^{3} + \|v_{j}\|_{3}^{3} \right)$$

T-SNE visualization: the same query $\phi(\mathbf{h}, \mathbf{r})$ are assigned more similar representation

Sparsity analysis: DURA can reduce the storage usage

Part5: Optimization

Monitoring and control of convergence procedure

- interact with other 4 KGE components
- with plenty of hyper-parameters to tune
 - e.g., optimizer / initializer / learning rate / batch size

Review the Learning Objective

Five core components

- Scoring function f()
- Negative sampling S^-
- Loss function L()
- Regularization r()
- Optimization

What can be conducted with AutoML? 🤪

Summary

Scoring function f()

- simple bi-linear models reach SOTA performance
- complex models are not often promising but more likely to overfitting
- trend: pure KGE model \rightarrow GNN-based / Path-based model

Negative sampling S^-

- tradeoff between efficiency and effectiveness
- false negative and hard samples play essential roles
- Loss function L()
- likelihood losses are empirically better than ranking losses
- lacking theoretical analysis and deep insights
- Regularization r()
- can be derived from associating scoring functions
- queries $(\phi(\textbf{h},\textbf{r})\,/\,\phi(\textbf{t},\textbf{r}))$ and targets (t/h) can be closer

Optimization

- closely interact with other components
- with plenty of hyper-parameters to tune

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
 - Configuration Space of KGE
 - Searching on original KG
 - Searching on sampled KG
- Key takeaway

Configuration Space of KGE

step1: 3 HP step2: 3 HP

step3: 1 HP step4: 6 HP

step5: 2 HP

Training procedure

Input data: training triples S_{tra}

- step I: initialize learnable parameters w (embeddings / model weights)
- step2: sample negative triples $\tilde{S}_{(h,r,t)}$ (S⁻) for each positive triple $(h, r, t) \in S_{tra}$ (S⁺)
- step3: f() forward inference to obtain *Scores* for triples in $\{(h, r, t)\} \cup \tilde{S}_{(h, r, t)}$
- step4: compute loss and regularization term w.r.t. L() and r()
- step5: backward propagation, and update w & optimizer

Output: *w*

No.	Hyper-parameter	Range				
1	L2 norm regularization	0, 10 ⁻⁸ , 10 ⁻⁶ , 10 ⁻⁴				
2	L3 norm regularization	0, 10 ⁻⁸ , 10 ⁻⁶ , 10 ⁻⁴				
3	Gamma	10, 50, 200				
4	Embedding dimension	100, 200, 500, 1000, 2000				
5	#negative samples	1, 8, 32, 128, 512, 2048				
6	Self-adversarial rate	0.5, 1.0, 2.0				
7	Training mode	negSamp, 1vs All, k vs All				
8	Filtering false negative samples	True, False				
9	Initialization mode	Uniform, xavier_norm				
10	Loss function	MR, BCE, BCE_adv, CE				
	Learning rate	10-2, 10-3, 10-4				
12	Batch size	128, 512, 2048				

Experiments: searching on original KG Old dog new tricks [ICLR 2020]^[2]

• Experiment settings

- Dataset:WNI8RR
- Model: ComplEx
- Searching by {loss function + training method}

• Observations

- CE + I/ CE + k are generally better
- BCE_adv performs best with negative sampling

		RESCAL	TransE	DistMult	ComplEx	ConvE
	Valid. MRR	36.1	31.5	35.0	35.3	34.3
	Emb. size	128 (-0.5)	512 (-3.7)	256 (-0.2)	256 (-0.3)	256 (-0.4)
2	Batch size	512 (-0.5)	128 (-7.1)	1024 (-0.2)	1024 (-0.3)	1024 (-0.4)
2	Train type	1vsAll (-0.8)	NegSamp -	NegSamp (-0.2)	NegSamp (-0.3)	1vsAll (-0.4)
5K	Loss	CE (-0.9)	CE (-7.1)	CE (-3.1)	CE (-3.8)	CE (-0.4)
B1.	Optimizer	Adam (-0.5)	Adagrad (-3.7)	Adagrad (-0.2)	Adagrad (-0.5)	Adagrad (-1.5)
4	Initializer	Normal (-0.8)	XvNorm (-3.7)	Unif. (-0.2)	Unif. (-0.5)	XvNorm (-0.4)
	Regularizer	None (-0.5)	L2 (-3.7)	L3 (-0.2)	L3 (-0.3)	L3 (-0.4)
	Reciprocal	No (-0.5)	Yes (-9.5)	Yes (-0.3)	Yes (-0.3)	Yes –
	Valid. MRR	46.8	22.6	45.4	47.6	44.3
	Emb. size	128 (-1.0)	512 (-5.1)	512 (-1.1)	128 (-1.0)	512 (-1.2)
	Batch size	128 (-1.0)	128 (-5.1)	1024 (-1.1)	512 (-1.0)	1024 (-1.3)
×	Train type	KvsAll (-1.0)	NegSamp –	KvsAll (-1.1)	1vsAll (-1.0)	KvsAll (-1.2)
NK	Loss	CE (-2.0)	CE (-5.1)	CE (-2.4)	CE (-3.5)	CE (-1.4)
И	Optimizer	Adam (-1.2)	Adagrad (-5.8)	Adagrad (-1.5)	Adagrad (-1.5)	Adam (-1.4)
	Initializer	Unif. (-1.0)	XvNorm (-5.1)	Unif. (-1.3)	Unif. (-1.5)	XvNorm (-1.4)
	Regularizer	L3 (-1.2)	L2 (-5.1)	L3 (-1.1)	L2 (-1.0)	L1 (-1.2)
	Reciprocal	Yes (-1.0)	Yes (-5.9)	Yes (-1.1)	No (-1.0)	Yes –

training methods

- n: negative sampling
- I: I vs all
- k: k vs all

Experiments: searching on original KG

- Visualization of training process
 - No obvious patterns found

Configurations with poor performances:

Configurations with good performances

Model	dataset	original MRR	KGbench MRR	Promotion
ComplEx	WN18RR	0.440	0.474	+0.034
ComplEx	FB15K237	0.247	0.339	+0.092
DistMult	WN18RR	0.430	0.444	+0.014
DistMult	FB15K237	0.241	0.337	+0.096
RESCAL	WN18RR	0.420	0.462	+0.042
RESCAL	FB15K237	0.270	0.338	+0.068

Pipeline for KG sampling analysis

Searching on original KG is too time-consuming

- How can boost the searching speed?
- What about searching on sampled KGs?

Data statistics

- smaller subgraph \rightarrow denser
- obtain multi-scale KGs via sampling

sparsity = $\frac{\#triple}{(\#entity * \#entity * \#relation)}$

dataset	wn18rr	wn18rr	wn18rr	wn18rr
sample ratio	0.01	0.1	0.3	Full
min sparsity	2.22E-04	2.22E-05	7.40E-06	
max sparsity	4.78E-04	4.08E-05	1.60E-05	5.00E-06
dataset	FB15k-237	FB15k-237	FB15k-237	FB15k-237
sample ratio	0.01	0.1	0.3	Full
min sparsity	2.90E-05	2.90E-06	9.67E-07	
max sparsity	3.81E-04	5.11E-05	2.24E-05	6.20E-06

dataset	FB15k-237	FB15k-237	FB15k-237	FB15k-237
sample ratio	0.2	0.5	0.8	Full
#entity	2908	7270	11632	14541
#relation	236	237	237	237
#triples	57.9k	182.4k	283.0k	310.1k
sparsity	5.81e-05	2.91e-05	I.77e-05	1.24e-05
validate depth distribution (1-7)	28.9 - 51.5 - 19.4 - 0.0 - 0.0 - 0.0 - 0.03	31.1 - 52.8 - 15.9 - 0.03 - 0.0 - 0.0 - 0.01	31.9 - 52.7 - 15.2 - 0.02 - 0.0 - 0.0 - 0.00	0.51 - 73.2 - 26.0 - 0.09 - 0.00 - 0.0 - 0.05
mean validate depth	1.90	I.84	1.83	2.26
test depth distribution (1-7)	27.3 - 51.3 - 21.2 - 0.0 - 0.0 - 0.03 - 0.03	31.1 - 52.5 - 16.1 - 0.03 - 0.0 - 0.0 - 0.02	32.0 - 52.5 - 15.3 - 0.02 - 0.0 - 0.0 - 0.00	0.44 - 73.4 - 25.8 - 0.17 - 0.00 - 0.0 - 0.13
mean test depth	1.94	1.85	1.83	2.26
mean inDegree	19.9	25.0	24.3	21.3
inDegree distribution (0/1/2/3/3+)	5.74 - 5.15 - 5.57 - 5.43 - 78.0	4.64 - 3.45 - 3.64 - 4.41 - 83.8	4.61 - 4.10 - 4.01 - 4.74 - 82.5	7.13 - 5.59 - 5.22 - 5.79 - 76.2
mean outDegree	19.9	25.0	24.3	21.3
outDegree distribution (0/1/2/3/3+)	3.85 - 2.37 - 1.92 - 2.33 - 89.5	3.86 - 2.11 - 1.40 - 1.63 - 90.9	2.77 - 2.32 - 1.97 - 2.07 - 90.8	4.47 - 4.59 - 3.23 - 3.12 - 84.5

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
 - Searching on original KG
 - Searching on sampled KG
 - Correlation across sampling ratios (scales)
 - Correlation across computing budgets
 - Efficiency analysis
 - Broader correlation
- Key takeaway

- Correlation across sampling ratios (scales)
 - $0.01 \rightarrow \text{sample ratio} = 0.01$ (of keeping nodes)

No.	X axis	Y axis	Spearman	Pearson
Ι	NELL-995	NELL-995 0.01	0.6738	0.6680
2	FB15k-237	FB15k-237 0.01	0.7674	0.6624

- Correlation across computing budgets
 - Dataset: WNI8RR 0.01
 - Searching by max #iterations: 8w / Iw / 5k / 2k

- Efficiency Analysis
 - Full KG: $iter_{full} = \#C \times iter_{max1}$
 - Sampled KG: $iter_{sample} = \#C \times iter_{max2} + K \times iter_{max1}$
 - Two-stage speed-up ratio: $R = \frac{iter_{full}}{iter_{sample}}$

Observation:

- 6-10X acceleration for the whole two-stage pipeline
- First stage: comparison of convergence speed

Mean iterations	Original KG	Sampled KG	Ratio _{stage I}
NELL-995 v.s. sample 0.01	85.8k	5.1k	16.6 X
FB15k-237 v.s. sample 0.01	85.8k	7.4k	11.5 X
FB15k-237 v.s. sample 0.05	76.5k	7.1k	10.7 X

To fully cover top-k configurations of original KG

FB15k-237	FB15k-237 0.01
Тор5	Тор20
Тор I О	Тор70
Тор20	Тор70
Тор30	Тор I 00
Тор50	Тор I 00

- Correlation across models
 - with the same configuration

No.	X axis	Y axis	Spearman	Pearson
I	ComplEx	RotatE	0.2096	0.5842
2	ComplEx	DistMult	0.7097	0.6818
3	RotatE	DistMult	0.3153	0.5343

- Correlation across datasets
 - for certain model with the same configuration

No.	X axis	Y axis	Spearman	Pearson
I	WN18RR 0.01	NELL-995 0.01	0.7597	0.7716
2	WN18RR 0.01	FB15k-237 0.01	0.7106	0.7726
3	NELL-995 0.01	FB15k-237 0.01	0.8022	0.9297

Observation:

- Stronger correlation between models of the same type
- Good correlation across
 sampled KGs

No.	Hyper-parameter	
I.	L2 norm regularization	
2	L3 norm regularization	
3	Gamma	
4	Embedding dimension	
5	#negative samples	
6	Self-adversarial rate	
10	Training mode	
11	Filtering false negative samples	
12	Initialization mode	
13	Loss function	
14	Learning rate	
15	Batch size	

Experiments

Summary

- directly search on full data is quite slow
- good correlation across scale/model/dataset
- two-step searching might be more practical
 - sample subgraph and proceed searching
 - transfer to full data and finetune

TODO experiments

- Importance/sensitivity estimation
- General model search
- Transfer to original KG
- Transfer to other datasets
- Transfer to other KGE tasks
- **Potential two-step configuration searching for knowledge graph embedding** Inputs: KG *G*, KGE model *M*
 - step I: sample configurations Θ and train on \mathcal{G}_{samp} , $\mathcal{M}_{\Theta} \leftarrow \{\mathcal{M}(\theta), \forall \theta \in \Theta\}$
 - step2: get top-k1 configurations Θ_{k1} w.r.t. \mathcal{M}_{Θ}
 - step3: compute dataset similarity by comparing \mathcal{M}_Θ and \mathcal{M}_Θ' , and recommend configurations Θ_{k2}
 - step4: finetune $\Theta' \leftarrow \Theta_{k1} \cup \Theta_{k2}$ on \mathcal{G} , get optimal $\theta^* \leftarrow \operatorname{argmax} \mathcal{M}_{\Theta'}$

Output: $heta^*$

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
- Key takeaway

Key takeaways

Recall the difficulties

The choice of KGE model and configuration

A fair comparison of model and strategy

Lacking understanding of KGE Components

KGbench

- Automated configuration search
- Benchmarking for fair comparison
 - Study the principle and interaction of

KGE components

TODO List

- Experiment-driven \rightarrow comprehensive experiments
- Deep insights + theoretical analysis
- Summary and refine key novelty

Reference

[1] Rossi, Andrea, et al. "Knowledge graph embedding for link prediction: A comparative analysis." ACM Transactions on Knowledge Discovery from Data (TKDD) 15.2 (2021): 1-49.

[2] Ruffinelli, Daniel, Samuel Broscheit, and Rainer Gemulla. "You can teach an old dog new tricks! on training knowledge graph embeddings." *International Conference on Learning Representations*. 2019.

[3] Ji, Shaoxiong, et al. "A survey on knowledge graphs: Representation, acquisition, and applications." IEEE Transactions on Neural Networks and Learning Systems (2021).

[4] Zhang, Yongqi, et al. "NSCaching: simple and efficient negative sampling for knowledge graph embedding." 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019.

[5] Sun, Zhiqing, et al. "A Re-evaluation of Knowledge Graph Completion Methods." Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020.

[6] Ding, Jingtao, et al. "Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering." arXiv preprint arXiv:2009.03376 (2020).

[7] Yang, Zhen, et al. "Understanding negative sampling in graph representation learning." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.

[8] Wang, Quan, et al. "Knowledge graph embedding: A survey of approaches and applications." IEEE Transactions on Knowledge and Data Engineering 29.12 (2017): 2724-2743.

[9] Zhang, Zhanqiu, Jianyu Cai, and Jie Wang. "Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph Completion." Advances in Neural Information Processing Systems 33 (2020).

[10] Lacroix, Timothée, Guillaume Obozinski, and Nicolas Usunier. "Tensor decompositions for temporal knowledge base completion." *arXiv* preprint arXiv:2004.04926 (2020).

[1] Ali, Mehdi, et al. "Bringing light into the dark: A large-scale evaluation of knowledge graph embedding models under a unified framework." *arXiv preprint arXiv:2006.13365* (2020).

model	training approach	loss	scope	regularizer
TransE [2]	uniform negative sampling	MR	pair	L2
TransH [16]	bernoulli negative sampling	MR	pair	L2
ComplEx [14]	uniform negative sampling	BCE	point	L2
SimplE [6]	uniform negative sampling	BCE	point	L2
RotatE [13]	uniform negative sampling	self-adv BCE	set	-
QuatE [18]	uniform negative sampling	BCE	point	L2
DistMult [17]	uniform negative sampling	MR	pair	L2
HolE [10]	uniform negative sampling	BCE	point	L2
RESCAL [11]	-	MSE	point	L2
TuckER [1]	1 vs all	BCE	point	-
CP [7]	1 vs all	CE	set	L3
ConvE [4]	k vs all	BCE	point	L2 + dropout
ConvKB [9]	bernoulli negative sampling	BCE	point	L2