KGBench:Towards Understanding and Benchmarking Model Search for Knowledge Graph Embedding

Presenter: Zhanke Zhou

Advisors: Yongqi Zhang and QuanmingYao

2021. 07. 09

1

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
- Key takeaway

Background – Knowledge Graph (KG)

A knowledge graph

- Mainly describe real world entities and relations, organized in a graph
- Allows potentially interacting entities with each other

Preliminaries

- Graph representation: $G = (\mathcal{E}, \mathcal{R}, \mathcal{F})$
- Entities $\mathcal E$
	- real world objects or concepts
- Relations $\mathcal R$
	- interactions between entities
- Facts F
	- the basic unit in form of (h, r, t)
	- (head entity, relation, tail entity)

Applications KGQA:

Recommendation:

Background – Knowledge Graph Embedding (KGE)

- Knowledge Graph Embedding (KGE)
	- Encode entities and relations in KG into low-dimensional vectors space
	- while capturing nodes' and edges' connection properties

• Most KGE models define a scoring function f to estimate the plausibility of any fact (h, r, t) using their embeddings: $f(h, r, t)$

Background – Knowledge Graph Embedding (KGE)

- Training
	- S^+ : positive samples S^- : negative samples
	- Objectives: max $f(S^+)$ and min $f(S^-)$
- Inference
	- head/tail prediction $(?, r, t)/(h, r, ?)$
	- the missing tail is inferred as the entity that results in the highest score:

$$
t = \operatorname*{argmax}_{e \in \mathcal{E}} f(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{e})
$$

- Evaluation metrics
	- *q*: the **rank** of correct entity

$$
MR = \frac{1}{|Q|} \sum_{q \in Q} q \quad MRR = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{q} \quad H@K = \frac{|\{q \in Q : q \le K\}|}{|Q|}
$$

Machine learning on Knowledge Graph

For obtaining embeddings of entities and relations, and finishing KGE task (e.g., predict potential facts)

- **the scoring function** f is expected to discriminate positive/negative factual triples
- a sampling scheme is needed to generate **negative samples** S^{-}
- a loss function L and regularization r are required for defining learning problem
- a **optimization** strategy is needed for convergence procedure

Considering the above 5 factors, we can formulate the KGE learning framework as:

Learning Framework of KGE

5 KGE components:

Learning Framework of KGE

Learning objective:

Training procedure of knowledge graph embedding

Input data: training triples S_{tra}

• step I: initialize learnable parameters w (embeddings / model weights)

repeat mini-batch training until convergence

- step2: sample negative triples $\tilde{S}_{(h,r,t)}$ (S^-) for each positive triple $(h,r,t) \in S_{tra}$ (S^+)
- step3: $f()$ forward inference to obtain $Scores$ for triples in $\{(h, r, t)\} \cup \tilde{S}_{(h, r, t)}$
- step4: compute loss and regularization term w.r.t. $L()$ and $r()$
- step5: backward propagation, and update w

Output: W

Review of Current KGE Models

Motivation and Objective

Difficulties and Challenges

- The choice of KGE model and configuration
	- usually in a time-consuming trial-and-error way
- 2. A fair comparison of model or strategy
	- due to the heterogeneity in implementation, training, and evaluation
- 3. Lacking understanding of KGE components
	- interaction, importance, and tunability are unclear

Ultimate objective of KGbench:

- *Design an AutoML approach,*
- *for any given dataset,*
- *with requirements and limited budget,*
- *to search for the optimal KGE model and configuration*

Comparing with related works

KGbench

- Design space(s) for KGE: model (configuration) / dataset / task
- Deep insights and theoretical analysis of KGE components
- Efficient automatic search for optimal model and configuration

Outline

- Background
- Motivation
- Understanding of KGE components
	- Part1: Scoring Function $f()$
	- Part2: Loss Function $L()$
	- Part3: Negative Sampling S^-
	- \bullet …
- Searching experiments
- Key takeaway

Part1: Scoring Function $f()$

Category

- Triple-based (focus point)
	- geometric models \rightarrow need additional constraints
	- tensor decomposition models \rightarrow expressive
	- neural network models \rightarrow more prone to overfitting
- Path / (Sub) Graph-based
	- utilize observable topological features
- Rule-based
	- logical rule mining

[3]

Part1: Scoring Function ()

Questions to answer for developing a novel f

- which representation space to choose
- which encoding model to use for modeling relational interactions (encoder)
- how to measure the plausibility of triplets in a specific space (decoder)
- whether to utilize auxiliary information

KGbench: $f(h, r, t) = \delta(\phi(h, r), t)$ decoupling and re-combination of existing f

- Real/complex vector space
- f is the combination of candidate ϕ and δ
- Not requiring additional information

In progress

Part3: Negative Sampling '

positive
$$
(h, r, t) \rightarrow
$$
 negative (\tilde{h}, r, t) or (h, r, \tilde{t})

Methods

 $Function₁$
 $F_{0.9}$

Distribution
Distribution
0.6

 $\frac{1}{2}$ 0.5
 $\frac{1}{2}$ 0.4

 ≥ 0.3

_
ក្ដី ០.2

ō

 $\begin{bmatrix} 1 \\ 6 \\ 1 \\ 6 \end{bmatrix}$

- Uniform / Bernoulli sampling
- GAN-based (with additional parameters to learn)
- Cache(score)-based (NSCaching ICDE 2019)
- Bias/variance-based (SRNS NeurIPS 2020)

Learning Objective:

optimization \triangleleft

loss function

scoring function

 $\lim_{w \to 0} L(f(\cdot, w), \ S^+ | S^-) + r(w)$ regularization

Outline

- Background
- Motivation
- Understanding of KGE components
	- \bullet ...
	- Part4: Regularization $r()$ [NeurlPS 2020]
	- Part5: Optimization
- Searching experiments
- Key takeaway

- $r()$: to avoid overfitting in KGE
	- trade off between expressiveness and complexity
- No general & promising regularization schemes
	- squared frobenius norm (L2 norm)
	- tensor nuclear 3-norm (N3 norm)
		- designed for CP-like tensor decomposition models

Even worse performance when equipped with FRO regularizer

Duality-induced regularizer (DURA^[9], NeurlPS 2020)

- for an existing tensor factorization based model (primal),
- there is often another distance based model (dual) closely associated with it.

Tensor factorization based (TFB): $f_{TFB}(h_i, r_i, t_k) = Re(\overline{\bm{h}}_i \bm{R}_i \bm{t}_k) = Re(\langle \bm{h}_i \overline{\bm{R}}_i, \bm{t}_k \rangle)$ Distance based (DB): $f_{DB}\big(h_i,r_j,t_k\big) = -\big\|\boldsymbol{h}_i\boldsymbol{\overline{R}}_j - \boldsymbol{t}_k\big\|_2^2$ Notice that $\ f_{DB}\big(h_i,r_j,t_k\big)=2Re\big(\bm{h}_i\bm{\overline{R}}_j\bm{t}_k\big)-\big\|\bm{h}_i\bm{\overline{R}}_j\big\|_2^2-\|\;\bm{t}_k\|_2^2$ $= 2f_{TFB} - ||h_i \overline{R}_j||_2^2 - ||t_k||_2^2$ $\max f_{DB} = \min - f_{DB} = \min (-2f_{TFB} + ||h_i \overline{R}_j||_2^2)$ Such that $\max f_{DB} = \min - f_{DB} = \min (-2f_{TFB} + ||h_i \overline{R}_j||_2^2 + ||t_k||_2^2)$ $r_{B_DURA} = \sum \left\{ \left\| \boldsymbol{h}_i \overline{\boldsymbol{R}}_j \right\|_2^2 \right\}$ $(h_i,r_i,t_k) \in S$ Derive the Basic DURA: $r_{B_DURA} =$ $\qquad \qquad \Big\} \qquad (\left\| \boldsymbol{h}_i \overline{\boldsymbol{R}}_j \right\|_2^2 + \left\| \boldsymbol{t}_k \right\|_2^2)$

- Explanation of basic DURA
	- (felid, include, tigers)
	- (felid, include, lions)
- \rightarrow representation of tigers and lions should be similar

- (tigers, is, mammals)
- to predict (lions, is, mammals)?

(b) Without regularization.

(c) With DURA.

- Basic DURA → DURA
	- act on tails \rightarrow heads and tails

$$
f_{TFB}(h_i, r_j, t_k) = Re(\overline{\boldsymbol{h}}_i \boldsymbol{R}_j \boldsymbol{t}_k^T) \qquad f_{TFB}(h_i, r_j, t_k) = Re(\overline{\boldsymbol{t}}_k \boldsymbol{R}_j^T \boldsymbol{h}_i^T)
$$

\n
$$
f_{DB}(h_i, r_j, t_k) = -||\boldsymbol{h}_i \overline{\boldsymbol{R}}_j - \boldsymbol{t}_k||_2^2 \qquad f_{DB}(h_i, r_j, t_k) = -||\boldsymbol{t}_k \boldsymbol{R}_j^T - \boldsymbol{h}_i||_2^2
$$

\n
$$
r = \sum_{(h_i, r_j, t_k) \in S} (||\boldsymbol{h}_i \overline{\boldsymbol{R}}_j||_2^2 + ||\boldsymbol{t}_k||_2^2) \qquad r = \sum_{(h_i, r_j, t_k) \in S} (||\boldsymbol{t}_k \boldsymbol{R}_j^T||_2^2 + ||\boldsymbol{h}_i||_2^2)
$$

Basic DURA:

$$
r_{B_DURA} = \sum_{(h_i, r_j, t_k) \in S} (\left\| \boldsymbol{h}_i \overline{\boldsymbol{R}}_j \right\|_2^2 + \left\| \boldsymbol{t}_k \right\|_2^2)
$$

DURA:

$$
r_{DURA} = \sum_{(h_i, r_j, t_k) \in S} (\left\| \boldsymbol{h}_i \overline{\boldsymbol{R}}_j \right\|_2^2 + \left\| \boldsymbol{t}_k \right\|_2^2 + \left\| \boldsymbol{t}_k \boldsymbol{R}_j^T \right\|_2^2 + \left\| \boldsymbol{h}_i \right\|_2^2)
$$

• Practical usage (in a weighted form)

$$
\begin{aligned}\n\min \sum_{(e_i, r_j, e_k) \in \mathcal{S}} \left[\ell_{ijk}(\mathbf{H}, \mathbf{R}_1, \dots, \mathbf{R}_J, \mathbf{T}) \right. \\
&+ \frac{\lambda}{\lambda} \lambda_1 (\|\mathbf{h}_i\|_2^2 + \|\mathbf{t}_k\|_2^2) + \lambda_2 (\|\mathbf{h}_i \overline{\mathbf{R}}_j\|_2^2 + \|\mathbf{t}_k \mathbf{R}_j^{\top}\|_2^2))],\n\end{aligned}
$$

• Smaller dataset scale, larger improvement

• KG \rightarrow TKG (ICLR 2020)^[10]

$$
\Omega^{3}(U, V, T; (i, j, k, l)) = \frac{1}{3} (||u_{i}||_{3}^{3} + ||u_{k}||_{3}^{3} + ||v_{k} \odot t_{l}||_{3}^{3})
$$

$$
\Omega^{3}(U, V^{t}, V, T; (i, j, k, l)) = \frac{1}{3} (2||u_{i}||_{3}^{3} + 2||u_{k}||_{3}^{3} + ||v_{j}^{t} \odot t_{l}||_{3}^{3} + ||v_{j}||_{3}^{3})
$$

T-SNE visualization: the same query $\phi(h,r)$ are assigned more similar representation

Part5: Optimization

Monitoring and control of convergence procedure

- interact with other 4 KGE components
- with plenty of hyper-parameters to tune
	- e.g., optimizer / initializer / learning rate / batch size

Review the Learning Objective

Five core components

- Scoring function $f()$
- Negative sampling S^-
- Loss function $L()$
- Regularization $r()$
- **Optimization**

What can be conducted with AutoML?

Summary

Scoring function $f()$

- simple bi-linear models reach SOTA performance
- complex models are not often promising but more likely to overfitting
- trend: pure KGE model \rightarrow GNN-based / Path-based model

Negative sampling S^-

- tradeoff between efficiency and effectiveness
- false negative and hard samples play essential roles
- Loss function $L()$
- likelihood losses are empirically better than ranking losses
- lacking theoretical analysis and deep insights
- Regularization $r()$
- can be derived from associating scoring functions
- queries $(\phi(h, r) / \phi(t, r))$ and targets (t/h) can be closer

Optimization

- closely interact with other components
- with plenty of hyper-parameters to tune

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
	- Configuration Space of KGE
	- Searching on original KG
	- Searching on sampled KG
- Key takeaway

Configuration Space of KGE

step1: 3 HP step2: 3 HP step3: 1 HP step4: 6 HP step5: 2 HP

Training procedure

Input data: training triples S_{tra}

- step1: initialize learnable parameters w (embeddings / model weights)
- step2: sample negative triples $\tilde{S}_{(h,r,t)}$ (S^-) for each positive triple $(h, r, t) \in S_{tra} (S^+)$
- step3: $f()$ forward inference to obtain *Scores* for triples in $\{(h, r, t)\}$ U $\tilde{S}_{(h, r, t)}$
- step4: compute loss and regularization term w.r.t. $L()$ and $r()$
- step5: backward propagation, and update w & optimizer

Output: w

Experiments: searching on original KG Old dog new tricks [ICLR 2020][2]

• Experiment settings

- Dataset:WN18RR
- Model: ComplEx
- Searching by *{loss function + training method}*

• Observations

- CE + I/ CE + k are generally better
- BCE_adv performs best with negative sampling

training methods

- n: negative sampling
- \cdot |: | vs all
- k: k vs all

Experiments: searching on original KG

- Visualization of training process
	- No obvious patterns found

Configurations with poor performances:

Configurations with good performances

Pipeline for KG sampling analysis

Searching on original KG is too time-consuming

- How can boost the searching speed?
- What about searching on sampled KGs?

Data statistics

- smaller subgraph \rightarrow denser
- obtain multi-scale KGs via sampling

sparsity $=$ #triple (#entity ∗ #entity ∗ #relation)

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
	- Searching on original KG
	- Searching on sampled KG
		- Correlation across sampling ratios (scales)
		- Correlation across computing budgets
		- Efficiency analysis
		- Broader correlation
- Key takeaway

- Correlation across sampling ratios (scales)
	- 0.01 \rightarrow sample ratio = 0.01 (of keeping nodes)

- Correlation across computing budgets
	- Dataset: WN18RR 0.01
	- Searching by max #iterations: 8w / Iw / 5k / 2k

- Efficiency Analysis
	- Full KG: $iter_{full}$ = #C $\times iter_{max1}$
	- Sampled KG: iter_{sample} = #C \times iter_{max2} + K \times iter_{max1}
	- Two-stage speed-up ratio: $R =$ $iter_{full}$ $iter_{sample}$

Observation:

- 6-10X acceleration for the whole two-stage pipeline
- First stage: comparison of convergence speed

To fully cover top-k configurations of original KG

- Correlation across models
	- with the same configuration

- Correlation across datasets
	- for certain model with the same configuration

Observation:

- Stronger correlation between models of the same type
- Good correlation across¹ sampled KGs

Experiments

Summary

- directly search on full data is quite slow
- good correlation across scale/model/dataset
- two-step searching might be more practical
	- sample subgraph and proceed searching
	- transfer to full data and finetune

TODO experiments

- Importance/sensitivity estimation
- General model search
- Transfer to original KG
- Transfer to other datasets
- Transfer to other KGE tasks

36

- **Potential two-step configuration searching for knowledge graph embedding** Inputs: KG G , KGE model M
	- step1: sample configurations Θ and train on \mathcal{G}_{samp} , $\mathcal{M}_{\Theta} \leftarrow \{ \mathcal{M}(\theta), \forall \theta \in \Theta \}$
	- step2: get top-k1 configurations Θ_{k1} w.r.t. \mathcal{M}_{Θ}
	- step3: compute dataset similarity by comparing \mathcal{M}_{Θ} and \mathcal{M}'_{Θ} , and recommend configurations Θ_{k2}
	- step4: finetune $\Theta' \leftarrow \Theta_{k1} \cup \Theta_{k2}$ on \mathcal{G} , get optimal $\theta^* \leftarrow \text{argmax} \, \mathcal{M}_{\Theta'}$

Output: θ^*

Outline

- Background
- Motivation
- Understanding of KGE components
- Searching experiments
- Key takeaway

Key takeaways

Recall the difficulties

The choice of KGE model and configuration

A fair comparison of model and strategy

Lacking understanding of KGE components

KGbench

- Automated configuration search
- Benchmarking for fair comparison
	- Study the principle and interaction of

KGE components

TODO List

- Experiment-driven \rightarrow comprehensive experiments
- Deep insights $+$ theoretical analysis
- Summary and refine key novelty

Reference

[1] Rossi, Andrea, et al. "Knowledge graph embedding for link prediction: A comparative analysis." *ACM Transactions on Knowledge Discovery from Data (TKDD)* 15.2 (2021): 1-49.

[2] Ruffinelli, Daniel, Samuel Broscheit, and Rainer Gemulla. "You can teach an old dog new tricks! on training knowledge graph embeddings." *International Conference on Learning Representations*. 2019.

[3] Ji, Shaoxiong, et al. "A survey on knowledge graphs: Representation, acquisition, and applications." *IEEE Transactions on Neural Networks and Learning Systems* (2021).

[4] Zhang, Yongqi, et al. "NSCaching: simple and efficient negative sampling for knowledge graph embedding." *2019 IEEE 35th International Conference on Data Engineering (ICDE)*. IEEE, 2019.

[5] Sun, Zhiqing, et al. "A Re-evaluation of Knowledge Graph Completion Methods." *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. 2020.

[6] Ding, Jingtao, et al. "Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering." *arXiv preprint arXiv:2009.03376* (2020).

[7]Yang, Zhen, et al. "Understanding negative sampling in graph representation learning." *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. 2020.

[8]Wang, Quan, et al. "Knowledge graph embedding: A survey of approaches and applications." *IEEE Transactions on Knowledge and Data Engineering* 29.12 (2017): 2724-2743.

[9] Zhang, Zhanqiu, Jianyu Cai, and Jie Wang. "Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph
Completion." *Advances in Neural Information Processing Systems* 33 (2020).

[10] Lacroix, Timothée, Guillaume Obozinski, and Nicolas Usunier. "Tensor decompositions for temporal knowledge base completion." *arXiv preprint arXiv:2004.04926* (2020).

[11] Ali, Mehdi, et al. "Bringing light into the dark: A large-scale evaluation of knowledge graph embedding models under a unified framework." *arXiv preprint arXiv:2006.13365* (2020).

