
KGBench:Towards Understanding and Benchmarking
Model Search for Knowledge Graph Embedding

Presenter: Zhanke Zhou
Advisors: Yongqi Zhang and QuanmingYao

2021. 07. 09

1

Outline
• Background
• Motivation
• Understanding of KGE components
• Searching experiments
• Key takeaway

2

Background – Knowledge Graph (KG)

A knowledge graph
• Mainly describe real world entities and relations, organized in a graph
• Allows potentially interacting entities with each other

Preliminaries
• Graph representation: 𝒢 = (ℰ,ℛ, ℱ)
• Entities ℰ

• real world objects or concepts
• Relations ℛ

• interactions between entities
• Facts ℱ

• the basic unit in form of (ℎ, 𝑟, 𝑡)
• (head entity, relation, tail entity)

Applications
KGQA:

Recommendation:

3

• Knowledge Graph Embedding (KGE)
• Encode entities and relations in KG into low-dimensional vectors space
• while capturing nodes’ and edges’ connection properties

• Most KGE models define a scoring function 𝑓 to estimate the plausibility
of any fact (ℎ, 𝑟, 𝑡) using their embeddings: 𝑓(𝒉, 𝒓, 𝒕)

Background – Knowledge Graph Embedding (KGE)

original KG continuous space

embedding

4

• Training
• 𝑆!: positive samples 𝑆": negative samples
• Objectives: max 𝑓(𝑆!) and min𝑓(𝑆")

• Inference
• head/tail prediction ? , 𝑟, 𝑡 /(ℎ, 𝑟, ?)
• the missing tail is inferred as the entity that results in the highest score:

• Evaluation metrics
• q: the rank of correct entity

Background – Knowledge Graph Embedding (KGE)

𝑓

5

6

Machine learning on Knowledge Graph

For obtaining embeddings of entities and relations, and finishing KGE task (e.g., predict potential facts)
• the scoring function 𝒇 is expected to discriminate positive/negative factual triples
• a sampling scheme is needed to generate negative samples 𝑺!
• a loss function 𝑳 and regularization 𝒓 are required for defining learning problem
• a optimization strategy is needed for convergence procedure

Considering the above 5 factors,
we can formulate the KGE learning framework as:

7

Learning Framework of KGE

Component Role Inputs Outputs Example

Scoring function 𝒇() Plausibility estimation Factual triples Scores for each triple TransE / CP

Loss function 𝑳() Learning problem definition Scores and labels Loss value BCE / CE

Negative sampling Budget tradeoff Positive samples 𝑺! Negative samples 𝑺" Uniform

Regularization 𝒓() Avoid overfitting Learnable parameters Regularization value L2 / N3

Optimization Convergence control - - -

5 KGE components:

Learning Framework of KGE

Training procedure of knowledge graph embedding
Input data: training triples 𝑆"#$
• step1: initialize learnable parameters 𝑤 (embeddings / model weights)

• step2: sample negative triples -𝑆(&,#,") (𝑆!) for each positive triple ℎ, 𝑟, 𝑡 ∈ 𝑆"#$ (𝑆))

• step3: 𝑓() forward inference to obtain 𝑆𝑐𝑜𝑟𝑒𝑠 for triples in ℎ, 𝑟, 𝑡 ∪ -𝑆(&,#,")
• step4: compute loss and regularization term w.r.t. 𝐿() and 𝑟()
• step5: backward propagation, and update 𝑤
Output:𝑤

Learning objective:

repeat
mini-batch training
until convergence

8

Review of Current KGE Models

No best models🤔 No best configurations🤔

[2]

[1]

9

Difficulties and Challenges
1. The choice of KGE model and configuration

• usually in a time-consuming trial-and-error way
2. A fair comparison of model or strategy

• due to the heterogeneity in implementation, training, and evaluation
3. Lacking understanding of KGE components

• interaction, importance, and tunability are unclear

Motivation and Objective

Ultimate objective of KGbench:
• Design an AutoML approach,
• for any given dataset,
• with requirements and limited budget,
• to search for the optimal KGE model and configuration

…

10

KGE Models

Evaluation

Training

[1] Link prediction analysis:
additional evaluation

[5] Re-evaluation:
tie policy

[11] Bringing light into the dark:
large-scale reproduction

[2] Old dog new tricks
search hyper-parameters

Diagnosis for
more insightful evaluation

Reproduction for
better training strategy

Comparing with related works

KGbench
• Design space(s) for KGE: model (configuration) / dataset / task
• Deep insights and theoretical analysis of KGE components
• Efficient automatic search for optimal model and configuration

11

Outline
• Background
• Motivation
• Understanding of KGE components
• Part1: Scoring Function 𝑓()
• Part2: Loss Function 𝐿()
• Part3: Negative Sampling 𝑆"
• …

• Searching experiments
• Key takeaway

12

Part1: Scoring Function 𝒇()
Category
• Triple-based (focus point)

• geometric models → need additional constraints

• tensor decomposition models → expressive

• neural network models → more prone to overfitting

• Path / (Sub) Graph-based
• utilize observable topological features

• Rule-based
• logical rule mining

Learning Objective:

[3]

[3]

13

Part1: Scoring Function 𝒇()

Questions to answer for developing a novel 𝑓
1) which representation space to choose
2) which encoding model to use for

modeling relational interactions (encoder)

3) how to measure the plausibility of
triplets in a specific space (decoder)

4) whether to utilize auxiliary information

KGbench: 𝑓(ℎ, 𝑟, 𝑡) = 𝛿(𝜙(𝒉, 𝒓), 𝒕)
decoupling and re-combination of existing 𝑓
• Real/complex vector space

• 𝑓 is the combination of candidate 𝜙 and 𝛿

• Not requiring additional information

[3]

14

In progress

Part2: Loss Function 𝑳()

Category

• Point-wise

• Pair-wise

• Set-wise

Learning Objective:

Comparison scope #positive samples #negative samples Representatives

Point-wise 1 (0) 0 (1) BCE / MSE

Pair-wise 1 1 MR

Set-wise All (including peers) All CE / NLL / Adversarial
15

Part3:Negative Sampling 𝑺'

positive ℎ, 𝑟, 𝑡 → negative Dℎ, 𝑟, 𝑡 or ℎ, 𝑟, �̃�
Methods
• Uniform / Bernoulli sampling

• GAN-based (with additional parameters to learn)

• Cache(score)-based (NSCaching ICDE 2019)

• Bias/variance-based (SRNS NeurIPS 2020)

Learning Objective:

around 58.5% negative triples
obtain the exact same score
as the valid one (in NN model)

Importance weighting:

• Both false and hard negative instances have large scores,
• false negative instances have lower prediction variance

Effective

Efficient

Self-contrast approximation:

[4]

[5]
[6]

[7]

16

[4]

negative triples with large scores are rare.

Outline
• Background
• Motivation
• Understanding of KGE components
• …
• Part4: Regularization 𝑟 [NeurIPS 2020]
• Part5: Optimization

• Searching experiments
• Key takeaway

17

Part4: Regularization 𝒓()
• 𝒓 : to avoid overfitting in KGE

• trade off between expressiveness and complexity

• No general & promising regularization schemes
• squared frobenius norm (L2 norm)
• tensor nuclear 3-norm (N3 norm)

• designed for CP-like tensor decomposition models

Learning Objective:

𝑟*+, = 𝑯 *
- + 𝑻 *

- +:
./0

|+|
𝑹. *

-

𝑟23 =:
4/0

|5|
(𝒉:4 3

3+ 𝒓:4 3
3 + 𝒕:4 3

3)

Even worse performance when equipped with FRO regularizer

[8]
[9]

18

Duality-induced regularizer (DURA[9], NeurIPS 2020)
• for an existing tensor factorization based model (primal),
• there is often another distance based model (dual) closely associated with it.

Tensor factorization based (TFB): 𝑓#$% ℎ&, 𝑟', 𝑡(= 𝑅𝑒 I𝒉&𝑹'𝒕(= 𝑅𝑒(𝒉&I𝑹', 𝒕()

Distance based (DB): 𝑓)% ℎ&, 𝑟', 𝑡(= − 𝒉&I𝑹' − 𝒕(*
*

𝑓)% ℎ&, 𝑟', 𝑡(= 2𝑅𝑒 𝒉&I𝑹'𝒕(− 𝒉&I𝑹' *
*
− 𝒕(*

*

= 2𝑓#$% − 𝒉&I𝑹' *
*
− 𝒕(*

*

𝐦𝐚𝐱𝒇𝑫𝑩 = 𝐦𝐢𝐧−𝒇𝑫𝑩 = 𝐦𝐢𝐧(−𝟐𝒇𝑻𝑭𝑩 + 𝒉𝒊I𝑹𝒋 𝟐
𝟐 + 𝒕𝒌 𝟐

𝟐)

𝑟%_)456 = U
(8!,:",;#)∈>

(𝒉&I𝑹' *
*+ 𝒕(*

*)Derive the Basic DURA:

Part4: Regularization 𝒓()

Notice that

Such that

19

• Explanation of basic DURA
• (felid, include, tigers)
• (felid, include, lions)

→ representation of tigers and lions should be similar

• (tigers, is, mammals)
• to predict (lions, is, mammals)?

Part4: Regularization 𝒓()
• Basic DURA → DURA

• act on tails → heads and tails

𝑓!"# ℎ$, 𝑟% , 𝑡& = 𝑅𝑒 F𝒉$𝑹%𝒕&!

𝑓'# ℎ$, 𝑟% , 𝑡& = − 𝒉$F𝑹% − 𝒕& (
(

𝑟 = K
(*!,,",-#)∈0

(𝒉$#𝑹% (
(+ 𝒕& (

()

𝑓!"# ℎ$, 𝑟% , 𝑡& = 𝑅𝑒 �̅�&𝑹%!𝒉$!

𝑓'# ℎ$, 𝑟% , 𝑡& = − 𝒕&𝑹%! − 𝒉$ (
(

𝑟 = 2
(*!,,",-#)∈0

(𝒕&𝑹%! (

(+ 𝒉$ (
()

𝑟3_5678 = U
(9!,:",;#)∈=

(𝒉>I𝑹? @
@+ 𝒕A @

@)
Basic DURA:

DURA:
𝑟57+8 = :

(&#,#$,"%)∈:

(𝒉;>𝑹. -
-+ 𝒕< -

- + 𝒕<𝑹.= -
- + 𝒉; -

-)

20

• Practical usage (in a weighted form)

• Smaller dataset scale, larger improvement

Part4: Regularization 𝒓()

• KG →TKG (ICLR 2020)[10]

T-SNE visualization:
the same query 𝜙 𝒉, 𝒓 are assigned

more similar representation

Sparsity analysis:
DURA can reduce the storage usage

21

22

Part5:Optimization

Monitoring and control of convergence procedure
• interact with other 4 KGE components
• with plenty of hyper-parameters to tune

• e.g., optimizer / initializer / learning rate / batch size

[4] [6]
[4]

Review the Learning Objective
Summary
Scoring function 𝑓()
• simple bi-linear models reach SOTA performance
• complex models are not often promising but more likely to overfitting
• trend: pure KGE model → GNN-based / Path-based model

Negative sampling 𝑆1
• tradeoff between efficiency and effectiveness
• false negative and hard samples play essential roles

Loss function 𝐿()
• likelihood losses are empirically better than ranking losses
• lacking theoretical analysis and deep insights

Regularization 𝑟()
• can be derived from associating scoring functions
• queries (𝜙 𝒉, 𝒓 / 𝜙(𝒕, 𝒓)) and targets (𝒕/𝒉) can be closer

Optimization
• closely interact with other components
• with plenty of hyper-parameters to tune

Five core components
• Scoring function 𝑓()
• Negative sampling 𝑆!

• Loss function 𝐿()
• Regularization 𝑟()
• Optimization

What can be conducted withAutoML?🤔

23

Outline
• Background
• Motivation
• Understanding of KGE components
• Searching experiments
• Configuration Space of KGE
• Searching on original KG
• Searching on sampled KG

• Key takeaway

24

No. Hyper-parameter Range

1 L2 norm regularization 0, 10-8, 10-6, 10-4

2 L3 norm regularization 0, 10-8, 10-6, 10-4

3 Gamma 10, 50, 200

4 Embedding dimension 100, 200, 500, 1000, 2000

5 #negative samples 1, 8, 32, 128, 512, 2048

6 Self-adversarial rate 0.5, 1.0, 2.0

7 Training mode negSamp, 1vs All, k vs All

8 Filtering false negative samples True, False

9 Initialization mode Uniform, xavier_norm

10 Loss function MR, BCE, BCE_adv, CE

11 Learning rate 10-2, 10-3, 10-4

12 Batch size 128, 512, 2048

Training procedure
Input data: training triples 𝑆&'(
• step1: initialize learnable parameters 𝑤

(embeddings / model weights)

• step2: sample negative triples #𝑆(*,',&) (𝑆") for
each positive triple ℎ, 𝑟, 𝑡 ∈ 𝑆&'((𝑆!)

• step3: 𝑓() forward inference to obtain 𝑆𝑐𝑜𝑟𝑒𝑠
for triples in ℎ, 𝑟, 𝑡 ∪ #𝑆(*,',&)

• step4: compute loss and regularization term w.r.t.
𝐿() and 𝑟()

• step5: backward propagation, and update 𝑤 &
optimizer

Output:𝑤

Configuration Space of KGE
step1: 3 HP
step2: 3 HP
step3: 1 HP
step4: 6 HP
step5: 2 HP

Any patterns in searching configuration?

25

Experiments: searching on original KG
• Experiment settings

• Dataset:WN18RR
• Model: ComplEx
• Searching by {loss function + training method}

• Observations
• CE + 1/ CE + k are generally better
• BCE_adv performs best with negative sampling

training methods
• n: negative sampling
• 1: 1 vs all
• k: k vs all

MRR

loss function + training method

Old dog new tricks [ICLR 2020][2]

26

Experiments: searching on original KG

• Visualization of training process
• No obvious patterns found

Configurations with poor performances:

Configurations with good performances

27

Model dataset original

MRR

KGbench

MRR

Promotion

ComplEx WN18RR 0.440 0.474 +0.034

ComplEx FB15K237 0.247 0.339 +0.092

DistMult WN18RR 0.430 0.444 +0.014

DistMult FB15K237 0.241 0.337 +0.096

RESCAL WN18RR 0.420 0.462 +0.042

RESCAL FB15K237 0.270 0.338 +0.068

params1
Random

Generator
𝒢,234

KGE
Model

𝒫,234

params2 Random
Walker

𝒢5267
𝒢8,$

𝒢8,$

𝒫5267

𝒫8,$

Difference:
Static Graph Features

Difference:
Dynamic Learning Features

Problem:
Over-fitting

Performance
distribution

Pipeline for KG sampling analysis

Searching on original KG is too time-consuming
• How can boost the searching speed?
• What about searching on sampled KGs?

28

Experiments: searching via KG sampling

Data statistics
• smaller subgraph → denser
• obtain multi-scale KGs via sampling

dataset wn18rr wn18rr wn18rr wn18rr
sample ratio 0.01 0.1 0.3 Full
min sparsity 2.22E-04 2.22E-05 7.40E-06

5.00E-06max sparsity 4.78E-04 4.08E-05 1.60E-05

dataset FB15k-237 FB15k-237 FB15k-237 FB15k-237
sample ratio 0.01 0.1 0.3 Full
min sparsity 2.90E-05 2.90E-06 9.67E-07

6.20E-06max sparsity 3.81E-04 5.11E-05 2.24E-05

dataset FB15k-237 FB15k-237 FB15k-237 FB15k-237
sample ratio 0.2 0.5 0.8 Full

#entity 2908 7270 11632 14541
#relation 236 237 237 237
#triples 57.9k 182.4k 283.0k 310.1k
sparsity 5.81e-05 2.91e-05 1.77e-05 1.24e-05

validate depth distribution (1-7) 28.9 - 51.5 - 19.4 - 0.0 - 0.0 - 0.0 - 0.03 31.1 - 52.8 - 15.9 - 0.03 - 0.0 - 0.0 - 0.01 31.9 - 52.7 - 15.2 - 0.02 - 0.0 - 0.0 - 0.00 0.51 - 73.2 - 26.0 - 0.09 - 0.00 - 0.0 - 0.05
mean validate depth 1.90 1.84 1.83 2.26

test depth distribution (1-7) 27.3 - 51.3 - 21.2 - 0.0 - 0.0 - 0.03 - 0.03 31.1 - 52.5 - 16.1 - 0.03 - 0.0 - 0.0 - 0.02 32.0 - 52.5 - 15.3 - 0.02 - 0.0 - 0.0 - 0.00 0.44 - 73.4 - 25.8 - 0.17 - 0.00 - 0.0 - 0.13
mean test depth 1.94 1.85 1.83 2.26
mean inDegree 19.9 25.0 24.3 21.3

inDegree distribution (0/1/2/3/3+) 5.74 - 5.15 - 5.57 - 5.43 - 78.0 4.64 - 3.45 - 3.64 - 4.41 - 83.8 4.61 - 4.10 - 4.01 - 4.74 - 82.5 7.13 - 5.59 - 5.22 - 5.79 - 76.2
mean outDegree 19.9 25.0 24.3 21.3

outDegree distribution (0/1/2/3/3+) 3.85 - 2.37 - 1.92 - 2.33 - 89.5 3.86 - 2.11 - 1.40 - 1.63 - 90.9 2.77 - 2.32 - 1.97 - 2.07 - 90.8 4.47 - 4.59 - 3.23 - 3.12 - 84.5

29

sparsity =
#triple

(#entity ∗ #entity ∗ #relation)

Outline
• Background
• Motivation
• Understanding of KGE components
• Searching experiments
• Searching on original KG
• Searching on sampled KG

• Correlation across sampling ratios (scales)
• Correlation across computing budgets
• Efficiency analysis
• Broader correlation

• Key takeaway

30

Experiments: searching via KG sampling
• Correlation across sampling ratios (scales)

• 0.01 → sample ratio = 0.01 (of keeping nodes)

No. X axis Y axis Spearman Pearson

1 NELL-995 NELL-995 0.01 0.6738 0.6680

2 FB15k-237 FB15k-237 0.01 0.7674 0.6624

x: FB15k-237
y: FB15k-237 0.01

x: NELL-995 (20w iterations)
y: NELL-995 0.01 (1w iterations)

31

Observation:
• Acceptable correlation between

original KG and sampled KG
• Well-performed configurations

can be selected

Experiments: searching via KG sampling
• Correlation across computing budgets

• Dataset: WN18RR 0.01
• Searching by max #iterations: 8w / 1w / 5k / 2k

x: MRR of 8w iters
y: MRR of 1w iters

x: MRR of 8w iters
y: MRR of 5k iters

x: MRR of 8w iters
y: MRR of 2k iters

No. X #iteration Y #iteration Spearman Pearson

1 8w 1w 0.6863 0.6140

2 8w 5k 0.7076 0.6467

3 8w 2k 0.5846 0.5714

32

Observation:
• Less training time, weaker correlation

Experiments: searching via KG sampling
• Efficiency Analysis

• Full KG: 𝑖𝑡𝑒𝑟>?@@ = #C × 𝑖𝑡𝑒𝑟A$B0
• Sampled KG: 𝑖𝑡𝑒𝑟C$AD@E = #C × 𝑖𝑡𝑒𝑟A$B- + K × 𝑖𝑡𝑒𝑟A$B0

• Two-stage speed-up ratio: 𝑅 = >;U:$%&&
>;U:'()*&+

• First stage: comparison of convergence speed

FB15k-237 FB15k-237 0.01

Top5 Top20

Top10 Top70

Top20 Top70

Top30 Top100

Top50 Top100

Mean iterations Original KG Sampled KG Ratiostage1

NELL-995
v.s. sample 0.01

85.8k 5.1k 16.6 X

FB15k-237
v.s. sample 0.01

85.8k 7.4k 11.5 X

FB15k-237
v.s. sample 0.05

76.5k 7.1k 10.7 X

33

To fully cover top-k configurations of original KG

Observation:
• 6-10X acceleration for the

whole two-stage pipeline

Experiments: searching via KG sampling
• Correlation across models
• with the same configuration

• Correlation across datasets
• for certain model with the same configuration

No. X axis Y axis Spearman Pearson

1 WN18RR 0.01 NELL-995 0.01 0.7597 0.7716

2 WN18RR 0.01 FB15k-237 0.01 0.7106 0.7726

3 NELL-995 0.01 FB15k-237 0.01 0.8022 0.9297

34

Observation:
• Stronger correlation

between models of the
same type

• Good correlation across
sampled KGs

No. X axis Y axis Spearman Pearson

1 ComplEx RotatE 0.2096 0.5842

2 ComplEx DistMult 0.7097 0.6818

3 RotatE DistMult 0.3153 0.5343

No. Hyper-parameter

1 L2 norm regularization

2 L3 norm regularization

3 Gamma

4 Embedding dimension

5 #negative samples

6 Self-adversarial rate

10 Training mode

11 Filtering false negative
samples

12 Initialization mode

13 Loss function

14 Learning rate

15 Batch size

35

loss function
• MR, BCE_mean, BCE_sum, CE, BCE_adv

#negative samples
• 1, 8, 32, 128, 512, 2048

Gamma
• 10, 50, 200

Batchsize
• 128, 512, 2048

Learning rate
• 10-4 ,10-3, 10-2,

Experiments: searching via KG sampling

✗ lower
rankings

✓ higher
rankings

Experiments

Summary
• directly search on full data is quite slow
• good correlation across scale/model/dataset
• two-step searching might be more practical

• sample subgraph and proceed searching
• transfer to full data and finetune

TODO experiments
• Importance/sensitivity estimation
• General model search
• Transfer to original KG
• Transfer to other datasets
• Transfer to other KGE tasks

Potential two-step configuration searching for knowledge graph embedding
Inputs: KG 𝒢, KGE model 𝑀
• step1: sample configurations Θ and train on 𝒢C$AD, ℳF ← {ℳ 𝜃 , ∀𝜃 ∈ Θ}
• step2: get top-k1 configurations Θ<0 w.r.t.ℳF

• step3: compute dataset similarity by comparing ℳF and ℳF
G , and recommend configurations Θ<-

• step4: finetune ΘG ← Θ<0 ∪ Θ<- on 𝒢, get optimal 𝜃∗ ← argmaxℳF-

Output: 𝜃∗
36

Outline
• Background
• Motivation
• Understanding of KGE components
• Searching experiments
• Key takeaway

37

Recall the difficulties
The choice of KGE model and
configuration
A fair comparison of model
and strategy
Lacking understanding of KGE
components

KGbench

Automated configuration search

Benchmarking for fair comparison

Study the principle and interaction of

KGE components

Key takeaways

38

TODO List
• Experiment-driven → comprehensive experiments
• Deep insights + theoretical analysis
• Summary and refine key novelty

[1] Rossi, Andrea, et al. "Knowledge graph embedding for link prediction: A comparative analysis." ACM Transactions on Knowledge Discovery from
Data (TKDD) 15.2 (2021): 1-49.

[2] Ruffinelli, Daniel, Samuel Broscheit, and Rainer Gemulla. "You can teach an old dog new tricks! on training knowledge graph
embeddings." International Conference on Learning Representations. 2019.

[3] Ji, Shaoxiong, et al. "A survey on knowledge graphs: Representation, acquisition, and applications." IEEE Transactions on Neural Networks and
Learning Systems (2021).

[4] Zhang, Yongqi, et al. "NSCaching: simple and efficient negative sampling for knowledge graph embedding." 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 2019.

[5] Sun, Zhiqing, et al. "A Re-evaluation of Knowledge Graph Completion Methods." Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. 2020.

[6] Ding, Jingtao, et al. "Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering." arXiv preprint arXiv:2009.03376 (2020).

[7]Yang, Zhen, et al. "Understanding negative sampling in graph representation learning." Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2020.

[8] Wang, Quan, et al. "Knowledge graph embedding: A survey of approaches and applications." IEEE Transactions on Knowledge and Data
Engineering 29.12 (2017): 2724-2743.

[9] Zhang, Zhanqiu, Jianyu Cai, and Jie Wang. "Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph
Completion." Advances in Neural Information Processing Systems 33 (2020).

[10] Lacroix, Timothée, Guillaume Obozinski, and Nicolas Usunier. "Tensor decompositions for temporal knowledge base completion." arXiv
preprint arXiv:2004.04926 (2020).

[11] Ali, Mehdi, et al. "Bringing light into the dark: A large-scale evaluation of knowledge graph embedding models under a unified
framework." arXiv preprint arXiv:2006.13365 (2020).

Reference

39

Q&A
Thanks for your attention!

40

41

