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Outline
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Background – Knowledge Graph (KG)

A knowledge graph
• Mainly describe real world entities and relations, organized in a graph
• Allows potentially interacting entities with each other

Preliminaries
• Graph representation: 𝒢 = (ℰ,ℛ, ℱ)
• Entities ℰ

• real world objects or concepts
• Relations ℛ

• interactions between entities
• Facts ℱ

• the basic unit in form of (ℎ, 𝑟, 𝑡)
• (head entity, relation, tail entity)

Applications
KGQA:

Recommendation:
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• Knowledge Graph Embedding (KGE) 
• Encode entities and relations in KG into low-dimensional vectors space
• while capturing nodes’ and edges’ connection properties

• Most KGE models define a scoring function 𝑓 to estimate the plausibility
of any fact (ℎ, 𝑟, 𝑡) using their embeddings: 𝑓(𝒉, 𝒓, 𝒕)

Background – Knowledge Graph Embedding (KGE)

original KG continuous space

embedding

4



• Training
• 𝑆!: positive samples 𝑆": negative samples
• Objectives: max 𝑓(𝑆!) and min𝑓(𝑆")

• Inference
• head/tail prediction ? , 𝑟, 𝑡 /(ℎ, 𝑟, ? )
• the missing tail is inferred as the entity that results in the highest score:

• Evaluation metrics
• q: the rank of correct entity

Background – Knowledge Graph Embedding (KGE)

𝑓
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Machine learning on Knowledge Graph

For obtaining embeddings of entities and relations, and finishing KGE task (e.g., predict potential facts)
• the scoring function 𝒇 is expected to discriminate positive/negative factual triples
• a sampling scheme is needed to generate negative samples 𝑺!
• a loss function 𝑳 and regularization 𝒓 are required for defining learning problem
• a optimization strategy is needed for convergence procedure

Considering the above 5 factors,
we can formulate the KGE learning framework as:
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Learning Framework of KGE

Component Role Inputs Outputs Example

Scoring function 𝒇( ) Plausibility estimation Factual triples Scores for each triple TransE / CP

Loss function 𝑳( ) Learning problem definition Scores and labels Loss value BCE / CE

Negative sampling Budget tradeoff Positive samples 𝑺! Negative samples 𝑺" Uniform

Regularization 𝒓( ) Avoid overfitting Learnable parameters Regularization value L2 / N3

Optimization Convergence control - - -

5 KGE components:



Learning Framework of KGE

Training procedure of knowledge graph embedding
Input data: training triples 𝑆"#$
• step1: initialize learnable parameters 𝑤 (embeddings / model weights)

• step2: sample negative triples -𝑆(&,#,") (𝑆!) for each positive triple ℎ, 𝑟, 𝑡 ∈ 𝑆"#$ (𝑆))

• step3: 𝑓( ) forward inference to obtain 𝑆𝑐𝑜𝑟𝑒𝑠 for triples in ℎ, 𝑟, 𝑡 ∪ -𝑆(&,#,")
• step4: compute loss and regularization term w.r.t. 𝐿( ) and 𝑟( )
• step5: backward propagation, and update 𝑤
Output:𝑤

Learning objective:

repeat
mini-batch training
until convergence
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Review of Current KGE Models

No best models🤔 No best configurations🤔

[2]

[1]
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Difficulties and Challenges
1. The choice of KGE model and configuration

• usually in a time-consuming trial-and-error way
2. A fair comparison of model or strategy

• due to the heterogeneity in implementation, training, and evaluation 
3. Lacking understanding of KGE components

• interaction, importance, and tunability are unclear

Motivation and Objective

Ultimate objective of KGbench:
• Design an AutoML approach,
• for any given dataset,
• with requirements and limited budget,
• to search for the optimal KGE model and configuration

…
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KGE Models

Evaluation

Training

[1] Link prediction analysis:
additional evaluation

[5] Re-evaluation:
tie policy

[11] Bringing light into the dark:
large-scale reproduction

[2] Old dog new tricks
search hyper-parameters

Diagnosis for
more insightful evaluation

Reproduction for
better training strategy

Comparing with related works

KGbench
• Design space(s) for KGE: model (configuration) / dataset / task
• Deep insights and theoretical analysis of KGE components
• Efficient automatic search for optimal model and configuration
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Part1: Scoring Function 𝒇( )
Category
• Triple-based (focus point)

• geometric models → need additional constraints

• tensor decomposition models → expressive

• neural network models → more prone to overfitting

• Path / (Sub) Graph-based
• utilize observable topological features

• Rule-based
• logical rule mining

Learning Objective:

[3]

[3]
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Part1: Scoring Function 𝒇( )

Questions to answer for developing a novel 𝑓
1) which representation space to choose
2) which encoding model to use for 

modeling relational interactions (encoder)

3) how to measure the plausibility of 
triplets in a specific space (decoder)

4) whether to utilize auxiliary information

KGbench: 𝑓(ℎ, 𝑟, 𝑡) = 𝛿(𝜙(𝒉, 𝒓), 𝒕)
decoupling and re-combination of existing 𝑓
• Real/complex vector space

• 𝑓 is the combination of candidate 𝜙 and 𝛿

• Not requiring additional information

[3]
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Part2: Loss Function 𝑳( )

Category

• Point-wise

• Pair-wise

• Set-wise

Learning Objective:

Comparison scope #positive samples #negative samples Representatives

Point-wise 1 (0) 0 (1) BCE / MSE

Pair-wise 1 1 MR

Set-wise All (including peers) All CE / NLL / Adversarial
15



Part3:Negative Sampling 𝑺'

positive ℎ, 𝑟, 𝑡 → negative Dℎ, 𝑟, 𝑡 or ℎ, 𝑟, �̃�
Methods
• Uniform / Bernoulli sampling

• GAN-based (with additional parameters to learn)

• Cache(score)-based (NSCaching ICDE 2019)

• Bias/variance-based (SRNS NeurIPS 2020)

Learning Objective:

around 58.5% negative triples 
obtain the exact same score 
as the valid one (in NN model)

Importance weighting:

• Both false and hard negative instances have large scores,
• false negative instances have lower prediction variance

Effective

Efficient

Self-contrast approximation:

[4]

[5]
[6]

[7]
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negative triples with large scores are rare.
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Part4: Regularization 𝒓( )
• 𝒓 : to avoid overfitting in KGE

• trade off between expressiveness and complexity

• No general & promising regularization schemes
• squared frobenius norm (L2 norm)
• tensor nuclear 3-norm (N3 norm)

• designed for CP-like tensor decomposition models

Learning Objective:

𝑟*+, = 𝑯 *
- + 𝑻 *

- +:
./0

|+|
𝑹. *

-

𝑟23 =:
4/0

|5|
( 𝒉:4 3

3+ 𝒓:4 3
3 + 𝒕:4 3

3)

Even worse performance when equipped with FRO regularizer

[8]
[9]
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Duality-induced regularizer (DURA[9], NeurIPS 2020)
• for an existing tensor factorization based model (primal),
• there is often another distance based model (dual) closely associated with it.

Tensor factorization based (TFB): 𝑓#$% ℎ&, 𝑟', 𝑡( = 𝑅𝑒 I𝒉&𝑹'𝒕( = 𝑅𝑒( 𝒉&I𝑹', 𝒕( )

Distance based (DB): 𝑓)% ℎ&, 𝑟', 𝑡( = − 𝒉&I𝑹' − 𝒕( *
*

𝑓)% ℎ&, 𝑟', 𝑡( = 2𝑅𝑒 𝒉&I𝑹'𝒕( − 𝒉&I𝑹' *
*
− 𝒕( *

*

= 2𝑓#$% − 𝒉&I𝑹' *
*
− 𝒕( *

*

𝐦𝐚𝐱𝒇𝑫𝑩 = 𝐦𝐢𝐧−𝒇𝑫𝑩 = 𝐦𝐢𝐧(−𝟐𝒇𝑻𝑭𝑩 + 𝒉𝒊I𝑹𝒋 𝟐
𝟐 + 𝒕𝒌 𝟐

𝟐)

𝑟%_)456 = U
(8!,:",;#)∈>

( 𝒉&I𝑹' *
*+ 𝒕( *

*)Derive the Basic DURA:

Part4: Regularization 𝒓( )

Notice that

Such that
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• Explanation of basic DURA
• (felid, include, tigers)
• (felid, include, lions)

→ representation of tigers and lions should be similar

• (tigers, is, mammals)
• to predict (lions, is, mammals)?

Part4: Regularization 𝒓( )
• Basic DURA → DURA

• act on tails → heads and tails

𝑓!"# ℎ$ , 𝑟% , 𝑡& = 𝑅𝑒 F𝒉$𝑹%𝒕&!

𝑓'# ℎ$ , 𝑟% , 𝑡& = − 𝒉$F𝑹% − 𝒕& (
(

𝑟 = K
(*!,,",-#)∈0

( 𝒉$#𝑹% (
(+ 𝒕& (

()

𝑓!"# ℎ$ , 𝑟% , 𝑡& = 𝑅𝑒 �̅�&𝑹%!𝒉$!

𝑓'# ℎ$ , 𝑟% , 𝑡& = − 𝒕&𝑹%! − 𝒉$ (
(

𝑟 = 2
(*!,,",-#)∈0

( 𝒕&𝑹%! (

(+ 𝒉$ (
()

𝑟3_5678 = U
(9!,:",;#)∈=

( 𝒉>I𝑹? @
@+ 𝒕A @

@)
Basic DURA:

DURA:
𝑟57+8 = :

(&#,#$,"%)∈:

( 𝒉;>𝑹. -
-+ 𝒕< -

- + 𝒕<𝑹.= -
- + 𝒉; -

-)
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• Practical usage (in a weighted form)

• Smaller dataset scale, larger improvement

Part4: Regularization 𝒓( )

• KG →TKG (ICLR 2020)[10]

T-SNE visualization:
the same query 𝜙 𝒉, 𝒓 are assigned

more similar representation

Sparsity analysis:
DURA can reduce the storage usage
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Part5:Optimization

Monitoring and control of convergence procedure
• interact with other 4 KGE components
• with plenty of hyper-parameters to tune

• e.g., optimizer / initializer / learning rate / batch size

[4] [6]
[4]



Review the Learning Objective
Summary
Scoring function 𝑓( )
• simple bi-linear models reach SOTA performance
• complex models are not often promising but more likely to overfitting
• trend: pure KGE model → GNN-based / Path-based model

Negative sampling 𝑆1
• tradeoff between efficiency and effectiveness
• false negative and hard samples play essential roles

Loss function 𝐿( )
• likelihood losses are empirically better than ranking losses
• lacking theoretical analysis and deep insights

Regularization 𝑟( )
• can be derived from associating scoring functions
• queries (𝜙 𝒉, 𝒓 / 𝜙(𝒕, 𝒓)) and targets (𝒕/𝒉) can be closer

Optimization
• closely interact with other components
• with plenty of hyper-parameters to tune

Five core components
• Scoring function 𝑓( )
• Negative sampling 𝑆!

• Loss function 𝐿( )
• Regularization 𝑟( )
• Optimization

What can be conducted withAutoML?🤔
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No. Hyper-parameter Range

1 L2 norm regularization 0, 10-8, 10-6, 10-4

2 L3 norm regularization 0, 10-8, 10-6, 10-4

3 Gamma 10, 50, 200

4 Embedding dimension 100, 200, 500, 1000, 2000

5 #negative samples 1, 8, 32, 128, 512, 2048

6 Self-adversarial rate 0.5, 1.0, 2.0

7 Training mode negSamp, 1vs All, k vs All

8 Filtering false negative samples True, False

9 Initialization mode Uniform, xavier_norm

10 Loss function MR, BCE, BCE_adv, CE

11 Learning rate 10-2, 10-3, 10-4

12 Batch size 128, 512, 2048

Training procedure
Input data: training triples 𝑆&'(
• step1: initialize learnable parameters 𝑤

(embeddings / model weights)

• step2: sample negative triples #𝑆(*,',&) (𝑆") for
each positive triple ℎ, 𝑟, 𝑡 ∈ 𝑆&'( (𝑆!)

• step3: 𝑓( ) forward inference to obtain 𝑆𝑐𝑜𝑟𝑒𝑠
for triples in ℎ, 𝑟, 𝑡 ∪ #𝑆(*,',&)

• step4: compute loss and regularization term w.r.t.
𝐿( ) and 𝑟( )

• step5: backward propagation, and update 𝑤 &
optimizer

Output:𝑤

Configuration Space of KGE
step1: 3 HP
step2: 3 HP
step3: 1 HP
step4: 6 HP
step5: 2 HP

Any patterns in searching configuration?
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Experiments: searching on original KG
• Experiment settings

• Dataset:WN18RR
• Model: ComplEx
• Searching by {loss function + training method}

• Observations
• CE + 1/ CE + k are generally better
• BCE_adv performs best with negative sampling

training methods
• n: negative sampling
• 1: 1 vs all
• k: k vs all

MRR

loss function + training method

Old dog new tricks [ICLR 2020][2]
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Experiments: searching on original KG

• Visualization of training process
• No obvious patterns found

Configurations with poor performances:

Configurations with good performances
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Model dataset original

MRR

KGbench 

MRR

Promotion

ComplEx WN18RR 0.440 0.474 +0.034

ComplEx FB15K237 0.247 0.339 +0.092

DistMult WN18RR 0.430 0.444 +0.014

DistMult FB15K237 0.241 0.337 +0.096

RESCAL WN18RR 0.420 0.462 +0.042

RESCAL FB15K237 0.270 0.338 +0.068



params1
Random

Generator
𝒢,234

KGE
Model

𝒫,234

params2 Random
Walker

𝒢5267
𝒢8,$

𝒢8,$

𝒫5267

𝒫8,$

Difference:
Static Graph Features

Difference:
Dynamic Learning Features

Problem:
Over-fitting

Performance
distribution

Pipeline for KG sampling analysis 

Searching on original KG is too time-consuming
• How can boost the searching speed?
• What about searching on sampled KGs?
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Experiments: searching via KG sampling

Data statistics
• smaller subgraph → denser
• obtain multi-scale KGs via sampling

dataset wn18rr wn18rr wn18rr wn18rr
sample ratio 0.01 0.1 0.3 Full
min sparsity 2.22E-04 2.22E-05 7.40E-06

5.00E-06max sparsity 4.78E-04 4.08E-05 1.60E-05

dataset FB15k-237 FB15k-237 FB15k-237 FB15k-237
sample ratio 0.01 0.1 0.3 Full
min sparsity 2.90E-05 2.90E-06 9.67E-07

6.20E-06max sparsity 3.81E-04 5.11E-05 2.24E-05

dataset FB15k-237 FB15k-237 FB15k-237 FB15k-237
sample ratio 0.2 0.5 0.8 Full

#entity 2908 7270 11632 14541
#relation 236 237 237 237
#triples 57.9k 182.4k 283.0k 310.1k
sparsity 5.81e-05 2.91e-05 1.77e-05 1.24e-05

validate depth distribution (1-7) 28.9 - 51.5 - 19.4 - 0.0 - 0.0 - 0.0 - 0.03 31.1 - 52.8 - 15.9 - 0.03 - 0.0 - 0.0 - 0.01 31.9 - 52.7 - 15.2 - 0.02 - 0.0 - 0.0 - 0.00 0.51 - 73.2 - 26.0 - 0.09 - 0.00 - 0.0 - 0.05
mean validate depth 1.90 1.84 1.83 2.26

test depth distribution (1-7) 27.3 - 51.3 - 21.2 - 0.0 - 0.0 - 0.03 - 0.03 31.1 - 52.5 - 16.1 - 0.03 - 0.0 - 0.0 - 0.02 32.0 - 52.5 - 15.3 - 0.02 - 0.0 - 0.0 - 0.00 0.44 - 73.4 - 25.8 - 0.17 - 0.00 - 0.0 - 0.13
mean test depth 1.94 1.85 1.83 2.26
mean inDegree 19.9 25.0 24.3 21.3

inDegree distribution (0/1/2/3/3+) 5.74 - 5.15 - 5.57 - 5.43 - 78.0 4.64 - 3.45 - 3.64 - 4.41 - 83.8 4.61 - 4.10 - 4.01 - 4.74 - 82.5 7.13 - 5.59 - 5.22 - 5.79 - 76.2
mean outDegree 19.9 25.0 24.3 21.3

outDegree distribution (0/1/2/3/3+) 3.85 - 2.37 - 1.92 - 2.33 - 89.5 3.86 - 2.11 - 1.40 - 1.63 - 90.9 2.77 - 2.32 - 1.97 - 2.07 - 90.8 4.47 - 4.59 - 3.23 - 3.12 - 84.5
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sparsity =
#triple

(#entity ∗ #entity ∗ #relation)
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Experiments: searching via KG sampling
• Correlation across sampling ratios (scales)

• 0.01 → sample ratio = 0.01 (of keeping nodes)

No. X axis Y axis Spearman Pearson

1 NELL-995 NELL-995 0.01 0.6738 0.6680

2 FB15k-237 FB15k-237 0.01 0.7674 0.6624

x: FB15k-237
y: FB15k-237 0.01

x: NELL-995 (20w iterations)
y: NELL-995 0.01 (1w iterations)

31

Observation:
• Acceptable correlation between

original KG and sampled KG
• Well-performed configurations

can be selected



Experiments: searching via KG sampling
• Correlation across computing budgets

• Dataset:  WN18RR 0.01
• Searching by max #iterations: 8w / 1w / 5k / 2k

x: MRR of 8w iters
y: MRR of 1w iters

x: MRR of 8w iters
y: MRR of 5k iters

x: MRR of 8w iters
y: MRR of 2k iters

No. X #iteration Y #iteration Spearman Pearson

1 8w 1w 0.6863 0.6140

2 8w 5k 0.7076 0.6467

3 8w 2k 0.5846 0.5714
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Observation:
• Less training time, weaker correlation



Experiments: searching via KG sampling
• Efficiency Analysis

• Full KG:       𝑖𝑡𝑒𝑟>?@@ = #C × 𝑖𝑡𝑒𝑟A$B0
• Sampled KG: 𝑖𝑡𝑒𝑟C$AD@E = #C × 𝑖𝑡𝑒𝑟A$B- + K × 𝑖𝑡𝑒𝑟A$B0

• Two-stage speed-up ratio: 𝑅 = >;U:$%&&
>;U:'()*&+

• First stage: comparison of convergence speed

FB15k-237 FB15k-237 0.01

Top5 Top20

Top10 Top70

Top20 Top70

Top30 Top100

Top50 Top100

Mean iterations Original KG Sampled KG Ratiostage1

NELL-995
v.s. sample 0.01

85.8k 5.1k 16.6 X

FB15k-237
v.s. sample 0.01

85.8k 7.4k 11.5 X

FB15k-237
v.s. sample 0.05

76.5k 7.1k 10.7 X
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To fully cover top-k configurations of original KG

Observation:
• 6-10X acceleration for the

whole two-stage pipeline



Experiments: searching via KG sampling
• Correlation across models
• with the same configuration

• Correlation across datasets
• for certain model with the same configuration

No. X axis Y axis Spearman Pearson

1 WN18RR 0.01 NELL-995 0.01 0.7597 0.7716

2 WN18RR 0.01 FB15k-237 0.01 0.7106 0.7726

3 NELL-995 0.01 FB15k-237 0.01 0.8022 0.9297
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Observation:
• Stronger correlation

between models of the
same type

• Good correlation across
sampled KGs

No. X axis Y axis Spearman Pearson

1 ComplEx RotatE 0.2096 0.5842

2 ComplEx DistMult 0.7097 0.6818

3 RotatE DistMult 0.3153 0.5343



No. Hyper-parameter

1 L2 norm regularization

2 L3 norm regularization

3 Gamma

4 Embedding dimension

5 #negative samples

6 Self-adversarial rate

10 Training mode

11 Filtering false negative 
samples

12 Initialization mode

13 Loss function

14 Learning rate

15 Batch size

35

loss function 
• MR, BCE_mean, BCE_sum, CE, BCE_adv

#negative samples
• 1, 8, 32, 128, 512, 2048

Gamma
• 10, 50, 200

Batchsize
• 128, 512, 2048

Learning rate
• 10-4 ,10-3, 10-2, 

Experiments: searching via KG sampling

✗ lower
rankings

✓ higher
rankings



Experiments

Summary
• directly search on full data is quite slow
• good correlation across scale/model/dataset
• two-step searching might be more practical

• sample subgraph and proceed searching
• transfer to full data and finetune

TODO experiments
• Importance/sensitivity estimation
• General model search
• Transfer to original KG
• Transfer to other datasets
• Transfer to other KGE tasks

Potential two-step configuration searching for knowledge graph embedding
Inputs: KG 𝒢, KGE model 𝑀
• step1: sample configurations Θ and train on 𝒢C$AD, ℳF ← {ℳ 𝜃 , ∀𝜃 ∈ Θ}
• step2: get top-k1 configurations Θ<0 w.r.t.ℳF

• step3: compute dataset similarity by comparing ℳF and ℳF
G , and recommend configurations Θ<-

• step4: finetune ΘG ← Θ<0 ∪ Θ<- on 𝒢, get optimal 𝜃∗ ← argmaxℳF-

Output: 𝜃∗
36



Outline
• Background
• Motivation
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• Searching experiments
• Key takeaway
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Recall the difficulties
The choice of KGE model and
configuration
A fair comparison of model
and strategy
Lacking understanding of KGE
components

KGbench

Automated configuration search

Benchmarking for fair comparison

Study the principle and interaction of

KGE components

Key takeaways
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TODO List
• Experiment-driven → comprehensive experiments
• Deep insights + theoretical analysis
• Summary and refine key novelty
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Q&A
Thanks for your attention!
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