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Background | atom interaction

Molecular graphs consist of different types of atom interaction.

Sharing of Available
Valence Electrons

o Covalent-bond

Covalent Molecule

Hydrogen bond (/
(E)-N-(2-methylstyryl)- |

N-allylacetamide

https://www.geeksforgeeks.org/covalent-bond/ 3
https://theory.labster.com/hydrogen_bond/



Background | sRriand LRI

'H @0 @N @C
© C C o The short-range interaction

OO SRl O- - - -CLRI (SRI) forms the structure of
the molecular graph.

The long-range interaction
(LRI) could determine both
the physical and chemical
properties.

(E)-N-(2-methylstyryl)- ‘."
N-allylacetamide

Treatment of electrostatic effects in macromolecular modeling. In Proteins: Structure, Function, and Bioinformatics, 1989.
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Existed works | Graph Neural Networks (GNNs)

GNNs learn information by performing neighbor aggregation, each layer
corresponds to one additional hop neighbors.
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

To capture LRI, we need to stack multiple GNN layers
for aggregating neighbor information.

https://snap.stanford.edu/graphsage/



Existed works | Graph Neural Networks (GNNs)

Layer 1 Layer 2

Over-smoothing

Interacting nodes converge to indistinguishable
representations as the number of GNN layers
increases.

Over-squashing

Over-squashing occurs when an exponentially
growing amount of information is squashed into
a fixed-size vector.

Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR, 2022. 7
https://minyoungg.github.io/MIT-deeplearning-blogs/2021/12/09/oversquashing-in-gnns/



Existed works ‘ graph transformer

Node pair-wise attention for transformer block.

Positional encodings (PE) | Structural encodings (SE) §| Graph features GPS layers

Local PE as node features. Sum over the rows
of non-diagonal elements of the random walk
matrix. w,, = 3(DLA)™ — W,,.

Global PE as node features. Eigenvectors of
the Laplacian ¢, associated to the k-lowest
non-zero eigenvalues.

Relative PE as edge features. Pair-wise
difference of local/global PE. Shown below is
the gradient of the eigenvectors V.
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Local SE as node features. Diagonal of the
m-steps random walk matrix

Wy, = diag((D~1A)™).

Global SE as node features. k-lowest
eigenvalues of the Laplacian Aj.

Relative SE as edge features. Boolean
indicating if two nodes belong to the same

sub-structure.
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DeepSet allows to work varying number of
eigenvectors, and uses augmentation to
handle the sign ambiguity of eigenvectors.
SignNet is a sign-invariant network well
adapted to work with a varying number of
sign-ambiguous eigenvectors.
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Batch-norm normalizes the encoding across
graphs for each 1, and W, to ensure they
are within the same range.

MLP is a multi-layer perceptron that
processes the encodings to learn a
meaningful structure.

DeepSet allows to work varying number of
eigenvalues.

Nodes features X° are
concatenated to the
positional features.

Global features g° are
concatenated to the node
features.

Edge features E° are
concatenated to the relative

PE/SE.
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MLP processes the node
features and edge features
before the GPS layers.

MPNN layer can be any model acting on a given node’s
neighbourhood with edge features.

Transformer layer can be any fully-connected layer that
works with a variable number of input nodes without
edge features.

L-layers are repeated, with [ being the current layer’s
index.

Residual connections for the MPNN and Transformer
layers are omitted for clarity.

MLPs mix the node/edge features with the PE and SE.
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MLP Multi-layer perceptron
PNA Principal neighbourhood aggregation
GINE Graph isomorphism network with edges
GCN_ Graph convolutional network

Node features

Edge features
(@ Learnable module
. J Choice of multiple modules

Recipe for a General, Powerful, Scalable Graph Transformer. In NeurlPS, 2022.

Irrelevant interactions

With self-attention, a node may attend to
many nodes with no direct edge
connection.

Additional computation

LRIs are usually sparse, and the node pair-
wise attention might not be necessary.
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Change the interaction space.

Can we capture the LRI in a more
manageable and computationally
efficient space!




General idea
7-hops

Mapping f

-—— b
- . —

- i -~

— —

Original Atoms

Retrieving f 1

Aim

Learning to project all the original atoms into a few neural atoms
that abstract the collective information of atomic groups in a molecule.



Overview

Eqn. |

Eqn.2 Eqn.3
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The neural atom has several advantages:

* Learnable projection from atoms to neural atoms.

* Reducing the multi-hop long-range interaction to single-hop.
* GNN-agnostic and plug-in-and-play.




Neural Atoms — step |
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Step-1. Project atom representations H . to neural atom representations Hy,.

H{{} = LayerNorm (Q{, ® MultiHead(Q(}, Hiy, Hiy) )

Projecting N atoms into K (<< N) neural
atoms by multi-head attention.




Neural Atoms — step 2
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Step- 1. Step-2. Exchange information among neural atoms Hl(\i)\ - I:Il(\a.
HY) = LayerNorm (HIEIQ & MultiHead(H, HY, H§Q)>

Exchanging information among neural atoms




Neural Atoms — step 3
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Step-3. Project neural atoms back and enhance the atoms’

representation (HGNN, H({))) H®,
HO = HéQN D AIEQI:IISQ, s.t. AI(\Q = Aggregate ({Am}%zl)T ERY *&

Enhancing the atom representation HS?,N by H({))
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2D setups

Dataset Total Total Avg  Mean Total Avg Avg Avg
Graphs Nodes Nodes Deg. Edges Edges Short.Path.

pcqm-contact 529,434 15,955,687 30.14 2.03 32,341,644 61.09
pepfunc 15,535 2,344,859 15094 2.04 4,773,974
pepstruct 15,535 2,344,859 15094 2.04 4,773,974

Diameter

4.63+0.63 9.86+1.79
307.30 20.8949.79 56.99+28.72
307.30 20.8949.79 56.99+28.72

2N
o/ NH
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Graph prediction and regression on Link prediction on PCQM-Contact.

peptides-func and peptides-struct.
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2D experiments

Table 1: Test performance on three LRGB datasets. Shown is the mean + s.d. of 4 runs.

Neural atoms can boost the performance of various GNNs up to 27.32%.

Peptides-func

Peptides-struct

PCQM-Contact

Model
AP 1t MAE | MRR 1

Transformer+LapPE 0.6326 + 0.0126 0.2529 £+ 0.0016 0.3174 + 0.0020
SAN+LapPE 0.6384 + 0.0121 0.2683 4+ 0.0043 0.3350 4+ 0.0003
GraphGPS 0.6535 + 0.0041 0.2500 + 0.0005 0.3337 £ 0.0006
GCN 0.5930 + 0.0023 0.3496 + 0.0013 0.2329 4+ 0.0009
+ Neural Atoms 0.6220 + 0.0046 0.2606 + 0.0027 0.2534 + 0.0200
GINE 0.5498 + 0.0079 0.3547 £ 0.0045 0.3180 4 0.0027
+ Neural Atoms 0.6154 + 0.0157 0.2553 + 0.0005 0.3126 + 0.0021
GCNII 0.5543 4+ 0.0078 0.3471 4+ 0.0010 0.3161 4+ 0.0004
+ Neural Atoms 0.5996 + 0.0033 0.2563 + 0.0020 0.3049 + 0.0006
GatedGCN 0.5864 + 0.0077 0.3420 4+ 0.0013 0.3218 £ 0.0011
+ Neural Atoms 0.6562 + 0.0075 0.2585 + 0.0017 0.3258 + 0.0003
GatedGCN+RWSE 0.6069 + 0.0035 0.3357 £ 0.0006 0.3242 + 0.0008
+ Neural Atoms 0.6591 + 0.0050 0.2568 + 0.0005 0.3262 + 0.0010
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2D running time

Neural atoms bring acceptable additional computation.

Table 14: Wall-clock run times. Average epoch time (average of 5 epochs, including validation
performance evaluation) is shown for each model and dataset combination.

avg. time / epoch Peptides-func Peptides-struct PCQM-Contact
GCN 2.6s 2.5s 56.9s
+ Neural Atom 5.5s 4.9s 65.1s
GINE 2.6s 2.6s 56.7s
+ Neural Atom 4.8s 4.2s 66.8s
GCNII 2.5s 2.3s 56.9s
+ Neural Atom 4.7s 5.1s 59.4s
GatedGCN 3.3s 3.2s 56.5s
+ Neural Atom 6.1s 5.5s 61.6s
GatedGCN+RWSE 3.4s 4.1s 59.4s
+ Neural Atom 6.4s 5.2s 65.0s
Transformer+LapPE 6.4s 6.2s 59.2s
SAN+LapPE 60s 57.5s 205s

GraphGPS 6.5s 6.5s 61.5s
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3D setups

OE62 contains 61,489 organic molecular

graphs, each consisting of up to 174 atoms with
16 different elements (H, Li,B,C ...)

Molecular energy calculation (in eV) measured

by Energy MAE and Energy MSE compares
to DFT-computed energies.




3D experiments

10 neural atoms without 3D information and half the hidden
dimension achieve competitive performance compared to the SOTA,
Ewald-based approach.

Table 2: Validation energy MAE and MSE comparison on OE62 dataset.

Energy MAE | Energy MSE | Number of Params.

SchNet (Schiitt et al., 2017) 0.1351 0.0658 275M
+ Ewald Block 0.0811 0.0301 1221 M
+ Neural Atoms 0.0834 0.0309 2.63 M
PaiNN (Schiitt et al., 2021) 0.6049 0.0133 12.52 M

+ Ewald Block 0.0590 0.0134 15.68
+ Neural Atoms 0.0558 0.0122

+ Ewald Block 0.0479 0.0107

M
6.05M 4

DimeNet++ (Gasteiger et al., 2020) 0.0501 0.0117 ‘21;2 M

+ Neural Atoms 0.0551 0.0129 1.97 M 4=
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Conclusion

We propose neural atoms to enhance GNNs capturing LRIs. Our method
boost GNNs by transforming original atoms into neural atomes, facilitating
information exchange, and then projecting the improved information back to
atomic representations.

Future directions

* Leveraging the atomic coordinate information better to capture the LRI.
* Instilling expert knowledge in the grouping strategy.
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