

Combating Bilateral Edge Noise for Robust Link Prediction

Zhanke Zhou

Hong Kong Baptist University

with Jiangchao Yao, Jiaxu Liu, Xiawei Guo, Quanming Yao, Li He, Liang Wang, Bo Zheng, Bo Han

[NeurIPS'23 Paper]: <u>https://openreview.net/pdf?id=ePkLqJh5kw</u> [Code]: <u>https://github.com/tmlr-group/RGIB</u>

Outline

- Introduction
- Method
- Experiments
- Summary

Introduction | background

Graph: a general form of data expression

黄瓜

味

烧烤

味

Introduction | background

The link prediction task

- based on the observed links
- to predict the latent links between the nodes

node-level

Introduction | graph representation learning

• GNN for link prediction on graphs

decode: $\boldsymbol{\phi}_{uv} = \text{READOUT}(\boldsymbol{h}_u, \boldsymbol{h}_v) \rightarrow \mathbb{R}$ optimization: $\mathcal{L} = \sum_{e_{uv} \in \mathcal{E}^{train}} -y_{ij} \log(\boldsymbol{\phi}_{uv}) + (1 - y_{ij}) \log(1 - \boldsymbol{\phi}_{uv})$

Introduction | problem setup

Introduction | problem setup

In practical scenarios,

- the <u>observed graph</u> is often with <u>noisy edges</u> (input noise)
- the predictive graph often contains noisy labels (label noise)
- these two kinds of noise can exist at the same time (by random split)

Research problem: how to improve the robustness of GNNs under edge noise 🤪

Definition 3.1 (Bilateral edge noise). Given a clean training data, i.e., observed graph $\mathcal{G} = (A, X)$ and labels $Y \in \{0, 1\}$ of query edges, the noisy adjacence \tilde{A} is generated by directly adding edge noise to the original adjacent matrix A while keeping the node features X unchanged. The noisy labels \tilde{Y} are similarly generated by adding edge noise to the labels Y. Specifically, given a noise ratio ε_a , the noisy edges A' ($\tilde{A} = A + A'$) are generated by flipping the zero element in A as one with the probability ε_a . It satisfies that $A' \odot A = O$ and $\varepsilon_a = |nonzero(\tilde{A})| - |nonzero(A)|/|nonzero(A)|$. Similarly, noisy labels are generated and added to the original labels, where $\varepsilon_y = |nonzero(\tilde{Y})| - |nonzero(Y)|/|nonzero(Y)|$.

Introduction | problem setup

Link prediction performance in AUC with the bilateral edge noise

Inspecting the representation distribution:

Table 1: Mean values of alignment, which are calculated as the L2 distance of representations of two randomly perturbed graphs $\tilde{A}_1^i, \tilde{A}_2^i, i.e.$, $\texttt{Align} = \frac{1}{N} \sum_{i=1}^N || H_1^i - H_2^i ||_2$. Representation $H_1^i = f_w(\tilde{A}_1^i, X)$ and $H_2^i = f_w(\tilde{A}_2^i, X)$.

dataset	Cora	Citeseer
clean	.616	.445
$\varepsilon = 20\%$.687	.586
$\varepsilon = 40\%$.695	.689
$\varepsilon \!=\! 60\%$.732	.696

Figure 4: Uniformity distribution on Cora dataset. Representations of query edges in the test set are mapped to unit circle of \mathbb{R}^2 with normalization followed by the Gaussian kernel density estimation as [35]. Both positive and negative edges are expected to be uniformly distributed.

representation collapse

Research problem: how to improve the robustness of GNNs under edge noise 🤪

Outline

- Introduction
- Method
- Experiments
- Summary

Graph Information Bottleneck (GIB)

However, GIB is intrinsically vulnerable to label noise since it entirely preserves the label supervision

Robust Graph Information Bottleneck (RGIB)

Definition 4.1 (Robust Graph Information Bottleneck). Based on the above analysis, we propose a new learning objective to balance informative signals regarding H, as illustrated in Fig. 5(a), i.e.,

$$\min RGIB \triangleq -I(\boldsymbol{H}; \tilde{Y}), \quad s.t. \; \gamma_{H}^{-} < H(\boldsymbol{H}) < \gamma_{H}^{+}, I(\boldsymbol{H}; \tilde{Y} | \tilde{A}) < \gamma_{Y}, \; I(\boldsymbol{H}; \tilde{A} | \tilde{Y}) < \gamma_{A}.$$
(2)

Specifically, constraints on $H(\mathbf{H})$ encourage a diverse \mathbf{H} to prevent representation collapse $(>\gamma_{H}^{-})$ and also limit its capacity $(<\gamma_{H}^{+})$ to avoid over-fitting. Another two MI terms, $I(\mathbf{H}; \tilde{Y} | \tilde{A})$ and $I(\mathbf{H}; \tilde{A} | \tilde{Y})$, mutually regularize posteriors to mitigate the negative impact of bilateral noise on \mathbf{H} . The complete derivation of RGIB and a further comparison of RGIB and GIB are in Appendix B.2.

Robust Graph Information Bottleneck

 $\min RGIB \triangleq -I(\boldsymbol{H}; \tilde{Y}), \quad s.t. \; \gamma_{H}^{-} < H(\boldsymbol{H}) < \gamma_{H}^{+}, I(\boldsymbol{H}; \tilde{Y} | \tilde{A}) < \gamma_{Y}, \; I(\boldsymbol{H}; \tilde{A} | \tilde{Y}) < \gamma_{A}.$

Two practical implementations of RGIB:

- RGIB-SSL explicitly optimizes the representation *H* with the self-supervised regularization
- RGIB-REP implicitly optimizes **H** by purifying the noisy \tilde{A} and \tilde{Y} with the reparameterization mechanism

RGIB with Self-Supervised Learning (RGIB-SSL)

$$\min \text{RGIB-SSL} \triangleq -\underbrace{\lambda_s(I(\boldsymbol{H}_1; \tilde{Y}) + I(\boldsymbol{H}_2; \tilde{Y}))}_{\text{supervision}} - \underbrace{\lambda_u(H(\boldsymbol{H}_1) + H(\boldsymbol{H}_2))}_{\text{uniformity}} - \underbrace{\lambda_aI(\boldsymbol{H}_1; \boldsymbol{H}_2)}_{\text{alignment}} - \underbrace{\lambda_aI(\boldsymbol{H}_1; \boldsymbol{H}_2)}_{\text{align$$

To achieve a tractable approximation of the MI terms 7

• we adopt the contrastive learning technique and contrast pair of samples,

• i.e., perturbed
$$\tilde{A}_1, \tilde{A}_2$$
 that are sampled from the augmentation distribution $\mathbb{P}(\tilde{A})$

$$\mathcal{R}_{align} = \sum_{i=1}^{N} \mathcal{R}_{i}^{pos} + \mathcal{R}_{i}^{neg}$$

$$\mathcal{R}_{unif} = \sum_{ij,mn}^{K} e^{-\|\boldsymbol{h}_{ij}^{1} - \boldsymbol{h}_{mn}^{1}\|_{2}^{2}} + e^{-\|\boldsymbol{h}_{ij}^{2} - \boldsymbol{h}_{mn}^{2}\|_{2}^{2}}$$

$$\mathcal{L} = \lambda_s \mathcal{L}_{cls} + \lambda_a \mathcal{R}_{align} + \lambda_u \mathcal{R}_{unif}$$

RGIB with Self-Supervised Learning (RGIB-SSL)

Proposition 4.2. A higher information entropy $H(\mathbf{H})$ of edge representation \mathbf{H} indicates a higher uniformity [35] of the representation's distribution on the unit hypersphere. Proof. See Appendix A.3. **Proposition 4.3.** A lower alignment $I(\mathbf{H}_1; \mathbf{H}_2)$ indicates a lower $I(\mathbf{H}; \tilde{A} | \tilde{Y})$. Since $I(\mathbf{H}; \tilde{A} | \tilde{Y}) \leq I(\mathbf{H}; \tilde{A}) \leq \frac{1}{2} (I(\mathbf{H}_1; \mathbf{H}_2) + I(\tilde{A}_1; \tilde{A}_2)) = \frac{1}{2} (I(\mathbf{H}_1; \mathbf{H}_2) + c)$, a constrained alignment estimated by $I(\mathbf{H}_1; \mathbf{H}_2)$ can bound a lower $I(\mathbf{H}; \tilde{A} | \tilde{Y})$ and $I(\mathbf{H}; \tilde{A})$. Proof. See Appendix A.4.

Definition 4.1 (Robust Graph Information Bottleneck). Based on the above analysis, we propose a new learning objective to balance informative signals regarding H, as illustrated in Fig. 5(a), i.e.,

 $\min \mathbf{RGIB} \triangleq -I(\mathbf{H}; \tilde{Y}), \quad s.t. \; \gamma_{H}^{-} < H(\mathbf{H}) < \gamma_{H}^{+}, I(\mathbf{H}; \tilde{Y} | \tilde{A}) < \gamma_{Y}, \; I(\mathbf{H}; \tilde{A} | \tilde{Y}) < \gamma_{A}.$ (2)

Specifically, constraints on $H(\mathbf{H})$ encourage a diverse \mathbf{H} to prevent representation collapse $(>\gamma_{H}^{-})$ and also limit its capacity $(<\gamma_{H}^{+})$ to avoid over-fitting. Another two MI terms, $I(\mathbf{H}; \tilde{Y} | \tilde{A})$ and $I(\mathbf{H}; \tilde{A} | \tilde{Y})$, mutually regularize posteriors to mitigate the negative impact of bilateral noise on \mathbf{H} . The complete derivation of RGIB and a further comparison of RGIB and GIB are in Appendix B.2.

RGIB with Data Reparameterization (RGIB-REP)

Latent variables Z_Y and Z_A are clean signals extracted from noisy \tilde{Y} and \tilde{A} .

• their complementary parts $Z_{Y'}$ and $Z_{A'}$ are considered as noise, satisfying $\tilde{Y} = Z_Y + Z_{Y'}$ and $\tilde{A} = Z_A + Z_{A'}$.

 $I(H; Z_Y)$ measures the supervised signals with selected samples Z_Y

 $I(Z_A; \tilde{A})$ and $I(Z_Y; \tilde{Y})$ help to select the clean and task-relevant information from \tilde{A} and \tilde{Y} .

RGIB with Data Reparameterization (RGIB-REP)

Proposition 4.4. Given the edge number n of \tilde{A} , the marginal distribution of Z_A is $\mathbb{Q}(Z_A) = \mathbb{P}(n) \prod_{\tilde{A}_{ij}=1}^{n} P_{ij}$. Z_A satisfies $I(Z_A; \tilde{A}) \leq \mathbb{E}[KL(\mathbb{P}_{\phi}(Z_A|A)||\mathbb{Q}(Z_A))] = \sum_{e_{ij} \in \tilde{A}} P_{ij} \log \frac{P_{ij}}{\tau} + (1 - P_{ij}) \log \frac{1 - P_{ij}}{1 - \tau} = \mathcal{R}_A$, where τ is a constant. The topology constraint $I(Z_A; \tilde{A})$ in Eq. 4 is bounded by \mathcal{R}_A , and the label constraint is similarly bounded by \mathcal{R}_Y . Proof. See Appendix A.5.

Proposition 4.5. The supervision term $I(\mathbf{H}; \mathbf{Z}_Y)$ in Eq. 4 can be empirically reduced to the classification loss, i.e., $I(\mathbf{H}; \mathbf{Z}_Y) \geq \mathbb{E}_{\mathbf{Z}_Y, \mathbf{Z}_A}[\log \mathbb{P}_{\boldsymbol{w}}(\mathbf{Z}_Y | \mathbf{Z}_A)] \approx -\mathcal{L}_{cls}(f_{\boldsymbol{w}}(\mathbf{Z}_A), \mathbf{Z}_Y)$, where \mathcal{L}_{cls} is the standard cross-entropy loss. Proof. See Appendix A.6.

Theorem 4.6. Assume the noisy training data $D_{train} = (\tilde{A}, X, \tilde{Y})$ contains a potentially clean subset $D_{sub} = (\mathbf{Z}_A^*, X, \mathbf{Z}_Y^*)$. The \mathbf{Z}_Y^* and \mathbf{Z}_A^* are the optimal solutions of Eq. 4 that $\mathbf{Z}_Y^* \approx Y$, based on which a trained GNN predictor $f_w(\cdot)$ satisfies $f_w(\mathbf{Z}_A^*, X) = \mathbf{Z}_Y^* + \epsilon$. The random error ϵ is independent of D_{sub} and $\epsilon \to 0$. Then, for arbitrary $\lambda_s, \lambda_A, \lambda_Y \in [0, 1]$, $\mathbf{Z}_A = \mathbf{Z}_A^*$ and $\mathbf{Z}_Y = \mathbf{Z}_Y^*$ minimizes the RGIB-REP of Eq. 4. Proof. See Appendix A.7.

Outline

- Introduction
- Method
- Experiments
- Summary

Experiments | Method comparison under bilateral noise

moth a d		Cora		(Citesee]	Pubmed	l	F	aceboo	k	C	hameleo	on	:	Squirrel	
method	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8111	.7419	.6970	.7864	.7380	.7085	.8870	.8748	.8641	<u>.9829</u>	.9520	.9438	.9616	.9496	.9274	.9432	.9406	.9386
DropEdge	.8017	.7423	.7303	.7635	.7393	.7094	.8711	.8482	.8354	.9811	.9682	.9473	.9568	.9548	.9407	.9439	.9377	.9365
NeuralSparse	.8190	.7318	.7293	.7765	.7397	.7148	.8908	.8733	.8630	.9825	.9638	.9456	.9599	.9497	.9402	.9494	.9309	.9297
PTDNet	.8047	.7559	.7388	.7795	.7423	.7283	.8872	.8733	.8623	.9725	.9674	.9485	.9607	.9514	.9424	.9485	.9326	.9304
Co-teaching	.8197	.7479	.7030	.7533	.7238	.7131	.8943	.8760	.8638	.9820	.9526	.9480	.9595	.9516	.9483	.9461	.9352	.9374
Peer loss	.8185	.7468	.7018	.7423	.7345	.7104	.8961	.8815	.8566	.9807	.9536	.9430	.9543	.9533	.9267	.9457	.9345	.9286
Jaccard	.8143	.7498	.7024	.7473	.7324	.7107	.8872	.8803	.8512	.9794	.9579	.9428	.9503	.9538	.9344	.9443	.9327	.9244
GIB	.8198	.7485	.7148	.7509	.7388	.7121	.8899	.8729	.8544	.9773	.9608	.9417	.9554	.9561	.9321	.9472	.9329	.9302
SupCon	.8240	.7819	.7490	.7554	.7458	.7299	.8853	.8718	.8525	.9588	.9508	.9297	.9561	.9531	.9467	.9473	.9348	.9301
GRACE	.7872	.6940	.6929	.7632	.7242	.6844	.8922	.8749	.8588	.8899	.8865	.8315	.8978	.8987	.8949	.9394	.9380	.9363
RGIB-REP	<u>.8313</u>	<u>.7966</u>	<u>.7591</u>	. <u>7875</u>	.7519	.7312	<u>.9017</u>	.8834	.8652	.9832	.9770	<u>.9519</u>	.9723	.9621	.9519	.9509	.9455	.9434
RGIB-SSL	.8930	.8554	.8339	.8694	.8427	.8137	.9225	.8918	.8697	<u>.9829</u>	<u>.9711</u>	.9643	<u>.9655</u>	<u>.9592</u>	<u>.9500</u>	<u>.9499</u>	.9426	.9425

→ Robust GIB achieves the best results in all six datasets under the bilateral edge noise

Experiments | Method comparison under unilateral noise

input noise		Cora		(Citeseer	•]]	Pubmed	l	F	aceboo	k	C	hameleo	on		Squirrel	l
input noise	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8027	.7856	.7490	.8054	.7708	.7583	.8854	.8759	.8651	.9819	.9668	.9622	.9608	.9433	.9368	.9416	.9395	.9411
DropEdge	.8338	.7826	.7454	.8025	.7730	.7473	.8682	.8456	.8376	.9803	.9685	.9531	.9567	.9433	.9432	.9426	.9376	.9358
NeuralSparse	.8534	.7794	.7637	.8093	.7809	.7468	.8931	.8720	.8649	.9712	.9691	.9583	.9609	.9540	.9348	.9469	.9403	<u>.9417</u>
PTDNet	.8433	.8214	.7770	.8119	.7811	.7638	.8903	.8776	.8609	.9725	.9668	.9493	.9610	.9457	.9360	.9469	.9400	.9379
Co-teaching	.8045	.7871	.7530	.8059	.7753	.7668	.8931	.8792	.8606	.9712	.9707	.9714	.9524	.9446	.9447	.9462	.9425	.9306
Peer loss	.8051	.7866	.7517	.8106	.7767	.7653	.8917	.8811	.8643	.9758	.9703	.9622	.9558	.9482	.9412	.9362	.9386	.9336
Jaccard	.8200	.7838	.7617	.8176	.7776	.7725	.8987	.8764	.8639	.9784	.9702	.9638	.9507	.9436	.9364	.9388	.9345	.9240
GIB	.8002	.8099	.7741	.8070	.7717	<u>.7798</u>	.8932	.8808	.8618	.9796	.9647	.9650	.9605	.9521	.9416	.9390	.9406	.9397
SupCon	.8349	.8301	.8025	.8076	.7767	.7655	.8867	.8739	.8558	.9647	.9517	.9401	.9606	.9536	.9468	.9372	.9343	.9305
GRACE	.7877	.7107	.6975	.7615	.7151	.6830	.8810	.8795	.8593	.9015	.8833	.8395	.8994	.9007	.8964	.9392	.9378	.9363
RGIB-REP	.8624	.8313	.8158	.8299	.7996	.7771	<u>.9008</u>	.8822	.8687	.9833	.9723	.9682	.9705	.9604	<u>.9480</u>	.9495	.9432	.9405
RGIB-SSL	.9024	.8577	.8421	.8747	.8461	.8245	.9126	.8889	.8693	<u>.9821</u>	<u>.9707</u>	<u>.9668</u>	<u>.9658</u>	<u>.9570</u>	.9486	<u>.9479</u>	<u>.9429</u>	.9429
label maise		Cora			Citeseer]]	Pubmed	l	F	aceboo	k	C	hameleo	on		Squirrel	l
label noise	20%	Cora 40%	60%	20%	Citeseer 40%	60%	20%	Pubmed 40%	l 60%	F 20%	aceboo 40%	k 60%	Cl 20%	hameleo 40%	on 60%	20%	Squirrel 40%	60%
label noise	20%	Cora 40%	60% .8060	20%	Citeseer 40% .7850	60% .7659	20%	Pubmed 40% .9039	60% .9070	F 20%	aceboo 40%	k 60% . <u>9886</u>	Cl 20% .9686	hameleo 40% .9580	on 60% .9362	20% .9720	Squirrel 40% .9720	60% .9710
label noise Standard DropEdge	20% .8281 .8363	Cora 40% .8054 .8273	60% .8060 .8148	20% .7965 .7937	Citeseer 40% .7850 .7853	.7659 .7632	20% .9030 .9313	Pubmed 40% .9039 .9201	60% .9070 .9240	F 20% .9882 .9673	aceboo 40% .9880 .9771	k 60% <u>.9886</u> .9776	Cl 20% .9686 .9580	hameleo 40% .9580 .9579	on 60% .9362 .9578	20% .9720 .9608	Squirrel 40% .9720 .9603	60% .9710 .9698
label noise Standard DropEdge NeuralSparse	20% .8281 .8363 .8524	Cora 40% .8054 .8273 .8246	60% .8060 .8148 .8211	20% .7965 .7937 .7968	Citeseer 40% .7850 .7853 .7921	.7659 .7632 .7752	20% .9030 .9313 .9272	Pubmed 40% .9039 .9201 .9136	60% .9070 .9240 .9089	F 20% .9882 .9673 .9781	aceboo 40% .9880 .9771 .9781	k 60% <u>.9886</u> .9776 .9784	Cl 20% .9686 .9580 .9583	hameleo 40% .9580 .9579 .9583	on 60% .9362 .9578 .9571	20% .9720 .9608 .9633	Squirrel 40% .9720 .9603 .9626	60% .9710 .9698 .9625
label noise Standard DropEdge NeuralSparse PTDNet	20% .8281 .8363 .8524 .8460	Cora 40% .8054 .8273 .8246 .8214	60% .8060 .8148 .8211 .8138	20% .7965 .7937 .7968 .7968	Citeseer 40% .7850 .7853 .7921 .7765	60% .7659 .7632 .7752 .7622	20% .9030 .9313 .9272 .9219	Pubmed 40% .9039 .9201 .9136 .9099	60% .9070 .9240 .9089 .9093	F 20% .9882 .9673 .9781 .9879	aceboo 40% .9880 .9771 .9781 .9880	k 60% .9886 .9776 .9784 .9783	Cl 20% .9686 .9580 .9583 .9585	hameleo 40% .9580 .9579 .9583 .9576	on 60% .9362 .9578 .9571 .9665	20% .9720 .9608 .9633 .9633	Squirrel 40% .9720 .9603 .9626 .9623	60% .9710 .9698 .9625 .9626
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching	20% .8281 .8363 .8524 .8460 .8446	Cora 40% .8054 .8273 .8246 .8214 .8209	60% .8060 .8148 .8211 .8138 .8157	20% .7965 .7937 .7968 .7968 .7974	Citeseer 40% .7850 .7853 .7921 .7765 .7877	.7659 .7632 .7752 .7622 .7913	20% .9030 .9313 .9272 .9219 .9315	Pubmed 40% .9039 .9201 .9136 .9099 .9291	.9070 .9240 .9089 .9093 .9319	F 20% .9882 .9673 .9781 .9879 .9762	aceboo 40% .9880 .9771 .9781 .9880 .9797	k 60% .9886 .9776 .9784 .9783 .9638	C 20% .9686 .9580 .9583 .9585 .9642	hameleo 40% .9580 .9579 .9583 .9576 .9650	on 60% .9362 .9578 .9571 .9665 .9533	20% .9720 .9608 .9633 .9633 .9675	Squirrel 40% .9720 .9603 .9626 .9623 .9641	60% .9710 .9698 .9625 .9626 .9655
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss	20% .8281 .8363 .8524 .8460 .8446 .8325	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036	60% .8060 .8148 .8211 .8138 .8157 .8069	20% .7965 .7937 .7968 .7968 .7974 .7971	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u>	60% .7659 .7632 .7752 .7622 .7913 .7751	20% .9030 .9313 .9272 .9219 .9315 .9126	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101	.9070 .9240 .9089 .9093 .9319 .9210	F 20% .9882 .9673 .9781 .9879 .9762 .9769	aceboo 40% .9880 .9771 .9781 .9880 .9797 .9750	k 60% .9886 .9776 .9784 .9783 .9638 .9734	Cl 20% .9686 .9580 .9583 .9585 .9642 .9621	hameleo 40% .9580 .9579 .9583 .9576 .9650 .9501	on 60% .9362 .9578 .9571 .9665 .9533 .9569	20% .9720 .9608 .9633 .9633 .9675 .9636	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694	60% .9710 .9698 .9625 .9626 .9655 .9655
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148	20% .7965 .7937 .7968 .7968 .7974 .7991 .8061	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887	.7659 .7632 .7752 .7622 .7913 .7751 .7689	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135	.9070 .9240 .9089 .9093 .9319 .9210 .9096	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9702	aceboo 40% .9880 .9771 .9781 .9880 .9797 .9750 .9725	k 60% .9886 .9776 .9784 .9783 .9638 .9734 .9758	Cl 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603	hamelec 40% .9580 .9579 .9583 .9576 .9650 .9501 .9659	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157	20% .7965 .7937 .7968 .7968 .7974 .7974 .7991 .8061 .7986	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887 .7852	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114	.9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9702 .9702 .9742	Faceboo 40% .9880 .9771 .9781 .9880 .9797 .9750 .9725 .9703	k 60% .9786 .9776 .9784 .9783 .9638 .9734 .9758 .9771	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651	hamelec 40% .9580 .9579 .9583 .9576 .9650 .9650 .9659 .9582	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9601
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB SupCon	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337 .8491	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137 .8275	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157 .8256	20% .7965 .7937 .7968 .7968 .7974 .7974 .7991 .8061 .7986 .8024	Citeseer 40% .7850 .7853 .7921 .7765 .7877 .7990 .7887 .7852 .7983	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649 .7807	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037 .9131	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114 .9108	.9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064 .9162	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9702 .9742 .9647	Faceboo 40% .9880 .9771 .9781 .9880 .9797 .9750 .9725 .9703 .9567	k 60% .9786 .9776 .9784 .9783 .9638 .9734 .9758 .9771 .9553	Cl 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651 .9584	hamelec 40% .9580 .9579 .9583 .9576 .9650 .9501 .9659 .9582 .9580	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489 .9477	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641 .9516	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628 .9595	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9601 .9511
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB SupCon GRACE	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337 .8491 .8531	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137 .8275 .8237	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157 .8256 .8193	20% .7965 .7937 .7968 .7968 .7974 .7991 .8061 .7986 .8024 .7909	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887 .7852 .7983 .7630	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649 .7807 .7807 .7737	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037 .9131 .9234	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114 .9108 .9252	60% .9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064 .9162 .9255	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9769 .9702 .9742 .9647 .8913	aceboo 40% .9880 .9771 .9781 .9780 .9750 .9750 .9725 .9703 .9567 .8972	k 60% .9776 .9778 .9783 .9638 .9734 .9758 .9771 .9553 .8887	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651 .9584 .9053	hamelec 40% .9580 .9579 .9583 .9576 .9650 .9501 .9659 .9582 .9580 .9074	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489 .9477 .9075	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641 .9516 .9171	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628 .9595 .9174	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9501 .9511 .9166
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB SupCon GRACE RGIB-REP	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337 .8491 .8531 <u>.8554</u>	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137 .8275 .8237 .8237	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157 .8256 .8193 .8297	20% .7965 .7937 .7968 .7968 .7974 .7974 .7991 .8061 .7986 .8024 .7909 <u>.8083</u>	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887 .7852 .7983 .7630 .7846	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649 .7807 .7807 .7737 .7945	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037 .9131 .9234 .9234	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114 .9108 .9252 .9343	60% .9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064 .9162 .9255 .9232	F 20% .9673 .9781 .9789 .9762 .9769 .9702 .9702 .9742 .9647 .8913 .9884	aceboo 40% .9880 .9771 .9781 .9780 .9797 .9750 .9725 .9703 .9567 .8972 .9883	k 60% .9786 .9776 .9784 .9783 .9638 .9734 .9758 .9771 .9553 .8887 .9889	Cl 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651 .9584 .9053 .9785	hamelec 40% .9580 .9579 .9583 .9576 .9650 .9501 .9659 .9582 .9580 .9074 .977	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489 .9477 .9075 .9785	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641 .9516 .9171 .9735	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628 .9595 .9174 .9733	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9501 .9501 .9511 .9166 .9737

As for the unilateral noise settings, our method still consistently surpasses all the baselines by a large margin

Experiments | The learned *representations*

Table 5: Comparison of alignment. Here, std. is short for *standard train-ing*, and SSL/REP are short for RGIB-SSL/RGIB-REP, respectively.

dataset		Cora		Citeseer			
method	std.	REP	SSL	std.	REP	SSL	
clean	.616	.524	.475	.445	.439	.418	
$\varepsilon\!=\!20\%$.687	<u>.642</u>	.543	.586	<u>.533</u>	.505	
$\varepsilon \!=\! 40\%$.695	.679	.578	.689	.623	.533	
$\varepsilon = 60\%$.732	<u>.704</u>	.615	.696	<u>.647</u>	.542	

 \rightarrow The graph representation has obvious improvement in distribution

Experiments | Ablation study

Table 6: Comparison on different schedulers. SSL/REP are short for RGIB-SSL/RGIB-REP. Experiments are performed with a 4-layer GAT and $\epsilon = 40\%$ mixed edge noise.

dataset	Co	ora	Cite	seer	Pub	med
method	SSL	REP	SSL	REP	SSL	REP
constant	.8398	.7927	.8227	.7742	.8596	.8416
$linear(\cdot)$.8427	.7653	.8167	.7559	.8645	.8239
$sin(\cdot)$.8436	.7924	.8132	.7680	.8637	.8275
$cos(\cdot)$.8334	.7833	.8088	.7647	.8579	.8372
$exp(\cdot)$.8381	.7815	.8085	.7569	.8617	.8177

Figure 7: Grid search of hyper-parameter with RGIB-SSL (left) and RGIB-REP (right) on Cora dataset with bilateral noise $\epsilon = 40\%$. As can be seen, neither too large nor too small value can bring a good solution.

(a) RGIB-SSL on Cora (b) RGIB-SSL on Citeseer (c) RGIB-REP on Cora (d) RGIB-REP on Citeseer Figure 8: Learning curves of RGIB-SSL and RGIB-REP with $\varepsilon = 40\%$ bilateral noise.

Table 8:	Ablation study f	for RGIB-SSL a	and RGIB-REP	with a 4-layer	SAGE. Here,	$\epsilon = 60\%$ indi	icates
the 60%	bilateral noise,	while the ϵ_a/ϵ_y	represent ratio	s of unilateral	input/label ne	oise.	

variant	$\epsilon = 60\%$	$\begin{array}{c} \text{Cora} \\ \epsilon_a = 60\% \end{array}$	$\epsilon_y = 60\%$	$\epsilon = 60\%$	Chameleon $\epsilon_a = 60\%$	$\epsilon_y = 60\%$
RGIB-SSL (full) - w/o hybrid augmentation - w/o self-adversarial - w/o supervision ($\lambda_s = 0$) - w/o alignment ($\lambda_a = 0$) - w/o uniformity ($\lambda_u = 0$)	$\begin{array}{c} .8596 \\ .8150 (5.1\%\downarrow) \\ .8410 (2.1\%\downarrow) \\ .7480 (12.9\%\downarrow) \\ .8194 (4.6\%\downarrow) \\ .8355 (2.8\%\downarrow) \end{array}$	$\begin{array}{c} .8730\\ .8604 \; (1.4\%\downarrow)\\ .8705 \; (0.2\%\downarrow)\\ .7810 \; (10.5\%\downarrow)\\ .8510 \; (2.5\%\downarrow)\\ .8621 \; (1.2\%\downarrow) \end{array}$.8994 .8757 (2.6%↓) .8927 (0.7%↓) .7820 (13.0%↓) .8461 (5.9%↓) .8878 (1.3%↓)	$\begin{array}{c} .9663 \\ .9528 \ (1.3\%\downarrow) \\ .9655 \ (0.1\%\downarrow) \\ .8626 \ (10.7\%\downarrow) \\ .9613 \ (0.5\%\downarrow) \\ .9652 \ (0.1\%\downarrow) \end{array}$	$\begin{array}{c} .9758\\ .9746\;(0.1\%\downarrow)\\ .9732\;(0.2\%\downarrow)\\ .8628\;(11.5\%\downarrow)\\ .9749\;(0.1\%\downarrow)\\ .9710\;(0.4\%\downarrow)\end{array}$.9762 .9695 (0.6%↓) .9746 (0.1%↓) .8512 (12.8%↓) .9722 (0.4%↓) .9751 (0.1%↓)
RGIB-REP (full) - w/o edge selection $(Z_A \equiv \tilde{A})$ - w/o label selection $(Z_Y \equiv \tilde{Y})$ - w/o topology constraint $(\lambda_A = 0)$ - w/o label constraint $(\lambda_Y = 0)$.7611 .7515 (1.2%↓) .7533 (1.0%↓) .7355 (3.3%↓) .7381 (3.0%↓)	.8487 .8199 (3.3%↓) .8373 (1.3%↓) .7699 (9.2%↓) .8106 (4.4%↓)	.8095 .7890 (2.5%↓) .7847 (3.0%↓) .7969 (1.5%↓) .8032 (0.7%↓)	.9567 $.9554(0.1\%\downarrow)$ $.9484(0.8\%\downarrow)$ $.9503(0.6\%\downarrow)$ $.9443(1.2\%\downarrow)$.9706 .9704 (0.1%↓) .9666 (0.4%↓) .9658 (0.4%↓) .9665 (0.4%↓)	.9676 .9661 (0.1%↓) .9594 (0.8%↓) .9635 (0.4%↓) .9669 (0.1%↓)

Table 7: Method comparison with a 4-layer GCN trained on the clean data.

method	Cora	Citeseer	Pubmed	Facebook	Chameleon	Squirrel
Standard	.8686	.8317	.9178	.9870	.9788	.9725
DropEdge	.8684	.8344	.9344	.9869	.9700	.9629
NeuralSparse	.8715	.8405	.9366	.9865	.9803	.9635
PTDNet	.8577	.8398	.9315	.9868	.9696	.9640
Co-teaching	.8684	.8387	.9192	.9771	.9698	.9626
Peer loss	.8313	.7742	.9085	.8951	.9374	.9422
Jaccard	.8413	.8005	.8831	.9792	.9703	.9610
GIB	.8582	.8327	.9019	.9691	.9628	.9635
SupCon	.8529	.8003	.9131	.9692	.9717	.9619
GRACE	.8329	.8236	.9358	.8953	.8999	.9165
RGIB-REP	.8758	.8415	.9408	.9875	.9792	.9680
RGIB-SSL	.9260	.9148	.9593	.9845	.9740	.9646

More experiments can be found in our paper

Outline

- Introduction
- Method
- Experiments
- Summary

Take home messages

- I. In this work, we study the problem of link prediction with the **Bilateral Edge Noise**.
- 2. We propose the **Robust Graph Information Bottleneck (RGIB)** principle, aiming to extract reliable signals via decoupling and balancing the mutual information among inputs, labels, and representation.
- 3. Regarding the instantiation of RGIB, the self-supervised learning technique and data reparametrization mechanism are utilized to establish the *RGIB-SSL and RGIB-REP*, respectively.
- 4. Empirical studies verify the denoising effect of the proposed RGIB under different noisy scenarios.

Future directions

- Learning with Graphs
 - explicit with LLMs¹: LLM-enhanced graph learning, e.g., GraphText on TAG
 - implicit with LLMs²: graph prompts for in-context learning, e.g., PRODIGY
- Reasoning with LLMs
 - explicit with Graphs³: mount with external graphs, e.g., KG-enhanced reasoning
 - implicit with Graphs⁴: progressively reasoning, e.g., COT / TOT / GOT

We are now collecting and summarizing related works, and find many works are on the way.

It will be released soon :)

Research scope

¹FM: Foundation Models, including LLM, VLM, etc.

Thanks for your listening!

Zhanke Zhou Email: <u>cszkzhou@comp.hkbu.edu.hk</u>