

Can Language Models Perform *Robust Reasoning* in Chain-of-thought Prompting with *Noisy Rationales*?

Zhanke Zhou

Hong Kong Baptist University

with Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han

Homepage (with all slides and posters): https://andrewzhou924.github.io/ Email: cszkzhou@comp.hkbu.edu.hkNeurIPS 2024 Paper: https://arxiv.org/pdf/2410.23856 Code: https://github.com/tmlr-group/NoisyRationales

Main contributions

New research problem: Noisy Rationales

We investigate the problem of noisy rationales _ in the prevailing chain-of-thought prompting

New benchmark: NoRa

We construct the NoRa dataset and systematically evaluate the robustness of LLMs

New algorithm: CD-CoT

We design a simple yet effective method to enhance robustness via contrastive denoising

Outline

- Background: language model reasoning
- New research problem: Noisy Rationales
- New benchmark: NoRa
- New algorithm: CD-CoT
- Take home messages
- Future directions

Background: language model reasoning

In-context learning (ICL) is commonly used in large language models (LLMs)

• enable LLMs to learn from a few examples without fine-tuning

Zero-shot Input

Question: In base-9, what is 62+58?

Input: ICL with three examples

Question-1: In base-9, what is 86+57? Answer-1: 154. Question-2: In base-9, what is 63+34? Answer-2: 107. Question-3: In base-9, what is 31+58? Answer-3: 100. Question: In base-9, what is 62+58?

Background: language model reasoning

In-context learning (ICL) is commonly used in large language models (LLMs)

• enable LLMs to learn from a few examples without fine-tuning

Zero-shot Input

Question: In base-9, what is 62+58?

Input: ICL with three examples

Question-1: In base-9, what is 86+57? Answer-1: 154. Question-2: In base-9, what is 63+34? Answer-2: 107. Question-3: In base-9, what is 31+58? Answer-3: 100. Question: In base-9, what is 62+58?

Prevailing in ICL, Chain of thought (CoT) prompting boost model reasoning

• CoT includes rationales, i.e., sequential reasoning thoughts to solve a question

Input: ICL with three examples	
Question-1: In base-9, what is 86+57? Answer-1: 154.	
Question-2: In base-9, what is 63+34? Answer-2: 107.	
Question-3: In base-9, what is 31+58? Answer-3: 100.	
Question: In base-9, what is 62+58?	

New research problem: Noisy Rationales

Existing work generally assume that CoT contains clean rationales But, what if CoT contains **noisy rationales**? **(**

noisy rationales include irrelevant or inaccurate thoughts

	the interevant buse-10 injoiniation is included in rationale
Input: CoT with clean rationales	Input: CoT with noisy rationales
Question-1: In base-9, what is 86+57? Rationale-1: In base-9, the digits are "012345678". We have 6 + 7 = 13 in base-10. Since we're in base-9, that exceeds the maximum value of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. We have 8 + 5 + 1 = 14 in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is 1. A leading digit 1. So the answer is 154. Answer-1: 154. Q2, R2, A2, Q3, R3, A3 Question : In base-9, what is 62+58?	Question-1 (Q1): In base-9, what is 86+57? Rationale-1 (R1: In base-9, the digits are "012345678" We have 6 + 7 = 13 in base- 10. <u>13 + 8 = 21</u> . Since we're in base-9, that exceeds the maximum value of 8 for a single digit.13 mod 9 = 4, so the digit is 4 and the carry is 1. Ve have 8 + 5 + 1 = 14 in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is 1. <u>5 + 9 = 14.</u> A leading digit is 1. So the answer is 154. Answer-1 (A1): 154. 02 R2 A2 O3 R3 A3
	Test Question: In base-9, what is 62+58?

while the test question asks about **base-9** calculation

the irrelevant **base 10 information** is included in rationale

New research problem: Noisy Rationales

Noisy rationales originate from diverse sources (see Appendix C for details)

• such as crowdsourced platforms, dialogue systems, and AI-generated data

However, the robustness of LLMs against noisy rationales is still unknown

- a new dataset is needed to conduct a systematic evaluation of current LLMs
- and verify the corresponding **countermeasures** against noisy rationales

Outline

- Background: language model reasoning
- New research problem: Noisy Rationales
- New benchmark: NoRa
 - Benchmark construction
 - Empirical evaluations on NoRa
- New algorithm: CD-CoT
- Take home messages
- Future directions

New benchmark: NoRa

NoRa (Noisy Rationales)

- a comprehensive testbed to evaluate the **robustness** against noisy rationales
- contains **26391** questions and **5** subtasks
- covering 3 types of reasoning tasks: mathematical, symbolic, and commonsense

Task	Irrelevant Thoughts	Inaccurate Thoughts
NoRa-Math	In base-9, digits run from 0 to 8. We have $3 + 2 = 5$ in base- 10. Since we're in base-9, that doesn't exceed the maximum value of 8 for a single digit. 5 mod $9 = 5$, so the digit is 5 and the carry is 0. There are five oceans on Earth: the Atlantic, Pacific, Indian, Arctic, and Southern. We have $8 + 6 + 0 =$ 14 in base 10. 14 mod $9 = 5$, so the digit is 5 and the carry is 1. A leading digit 1. So the answer is 155. Answer: 155	In base-9, digits run from 0 to 8. We have $3 + 2 = 5$ in base- 10. $5 + 4 = 9$. Since we're in base-9, that doesn't exceed the maximum value of 8 for a single digit. 5 mod $9 = 5$, so the digit is 5 and the carry is 0. $5 + 9 = 14$. We have $8 + 6 + 0 =$ 14 in base 10. 14 mod $9 = 5$, so the digit is 5 and the carry is 1. A leading digit 1. So the answer is 155. Answer: 155
NoRa-Symbolic	"turn around right" means the agent needs to turn right, and repeat this action sequence four times to complete a 360-degree loop. <u>Many GPS navigation systems will issue</u> a 'turn around' command if the driver deviates from the planned route. So, in action sequence is I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT	"turn around right" means the agent needs to turn right, and repeat this action sequence four times to com- plete a 360-degree loop. <u>Turn opposite is I_TURN_RIGHT</u> I_TURN_LEFT. So, in action sequence is I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT
NoRa-Com.	The relations path are son, sister, uncle, which means Fran- cisco is David's son's sister's uncle. For son's sister, we have son's sister is daughter. So the relations path are reduced to daughter, uncle. In genetics, mitochondrial DNA is always inherited from the mother, making the mother-daughter genetic link unique. For daughter's uncle, we have daugh- ter's uncle is brother. So the relations path are reduced to brother. Therefore, the answer is brother. Answer:brother	The relations path are son, sister, uncle, which means Fran- cisco is David's son's sister's uncle. For son's sister, we have son's sister is daughter. So the relations path are reduced to daughter, uncle. For daughter's uncle, we have daughter's uncle is brother. We have brother' sister is brother. So the relations path are reduced to brother. Therefore, the answer is brother. Answer:brother

Table 1: Noisy rationales (consisting <u>noisy thoughts</u>) sampled from the NoRa dataset. Full examples of NoRa are in Appendix C.6, and real-world examples of noisy rationales are in Appendix C.3.

New benchmark: NoRa

Difficulty	Noise Ratio	#total thought Math Base-9	ts (#noisy thoug Math Base-11	hts) of promp Sym. Equal	oting rationales Sym. Longer	(Avg.) Com.
Easy	0.3	10 (2)	10 (2)	11.5 (2.7)	11.0 (2.5)	7 (2)
Medium	0.5	12 (4)	12 (4)	13.3 (4.5)	12.7 (4.2)	8 (3)
Hard	0.8	14 (6)	14 (6)	16.0 (7.1)	15.2 (6.8)	9 (4)
#questions		4024	9269	4182	3920	4996

Definitions

Table 2: Statistics of NoRa dataset.

- Irrelevant thoughts are irrelevant to the given context
 - e.g., discussing the genetic overlap of siblings when the task is to deduce family roles
- Inaccurate thoughts are factual errors in the given context
 - e.g., "5+5=10" is wrong in base-9 calculation

Benchmark construction

- generating noisy rationales by **inserting irrelevant or inaccurate thoughts**
- guarantee the overall correctness without modifying the question or answer
- control the reasoning difficulty through **different noise ratios (0.3, 0.5, 0.8)**

Outline

- Background: language model reasoning
- New research problem: Noisy Rationales
- New benchmark: NoRa
 - Benchmark construction
 - Empirical evaluations on NoRa
- New algorithm: CD-CoT
- Take home messages
- Future directions

Empirical evaluations on NoRa

Grand observation: The base LLM (GPT-3.5) with all the existing methods is severely affected by noisy rationales

- a 0.2%-25.3% decrease with irrelevant noise
- a 0.1%-54.0% decrease with inaccurate noise (compared with clean rationales)

Observation 1:
self-correction
methods perform
poorly on most tasks
with noisy rationales

Observation 2: self-consistency methods can improve robustness without true denoising

Task	Method M	$\mathrm{Acc}(\mathcal{M},\mathcal{Q},\mathcal{P}_{\mathrm{clean}})$	Easy	$\operatorname{Acc}(\mathcal{M}, \mathcal{Q}, \mathcal{M})$ Medium	$\mathcal{P}_{ ext{irrelevant}} \\ ext{Hard}$	Avg.	Easy A	$\operatorname{Acc}(\mathcal{M}, \mathcal{Q}, \mathcal{M})$	$\mathcal{P}_{ ext{inaccurate}}$ Hard	Avg.
Math Base-9	Base w/ ISC [29] w/ SP [89] w/ SM [62] w/ SD [102] w/ SC [83]	46.4 24.3 26.2 37.4 47.9 61.5	39.3 17.7 25.5 30.0 37.2 51.1	30.3 14.7 25.5 22.7 25.4 39.0	26.6 12.7 21.9 16.5 24.7 36.2	32.1 15.0 24.3 23.1 29.1 42.1	23.2 18.4 20.0 24.7 <u>29.3</u> 32.7	10.1 13.7 <u>18.4</u> 19.2 12.5 15.3	6.0 12.3 14.3 <u>12.4</u> 8.7 7.5	13.1 14.8 17.6 18.8 16.8 <u>18.5</u>
Math Base-11	Base w/ ISC [29] w/ SP [89] w/ SM [62] w/ SD [102] w/ SC [83]	23.9 11.2 20.7 16.3 17.9 33.7	<u>19.1</u> 8.3 17.5 12.0 12.3 25.3	13.6 7.8 16.7 6.0 12.0 <u>16.3</u>	$ \begin{array}{r} 10.7 \\ 6.0 \\ \underline{14.0} \\ \overline{5.7} \\ 13.3 \\ 15.0 \end{array} $	14.5 7.4 <u>16.0</u> 7.9 12.5 18.9	14.0 6.5 <u>14.1</u> 12.0 17.0 19.7	6.7 5.2 10.7 9.3 8.7 9.3	3.6 4.7 10.8 <u>7.7</u> 5.3 3.3	8.1 5.5 11.9 9.7 10.3 <u>10.8</u>
Symbolic Equal	Base w/ ISC [29] w/ SP [89] w/ SM [62] w/ SD [102] w/ SC [83]	32.7 23.9 23.2 25.0 9.9 35.3	28.1 20.0 23.0 20.7 10.1 31.0	25.1 16.3 22.6 19.7 10.9 28.3	23.0 15.5 22.7 16.7 10.3 27.0	25.4 17.3 22.8 19.0 10.4 28.8	29.1 19.2 23.7 21.0 10.1 33.3	26.1 18.3 22.5 20.3 10.9 30.7	22.7 18.1 <u>23.5</u> 20.0 10.4 26.0	26.0 18.5 23.2 20.4 10.5 30.0
Symbolic Longer	Base w/ ISC [29] w/ SP [89] w/ SM [62] w/ SD [102] w/ SC [83]	9.2 4.9 5.1 1.7 0.1 13.0	6.3 4.6 4.3 0.7 0.1 7.7	7.2 2.7 4.1 0.7 0.1 9.0	6.0 3.7 3.9 1.3 0.2 6.3	6.5 3.7 4.1 1.0 0.1 7.7	7.0 3.4 4.9 1.3 0.1 8.0	6.8 4.3 4.0 0.7 0.3 8.0	6.0 3.3 4.5 0.3 0.0 8.7	6.6 3.7 4.5 0.8 0.1 8.2
Commonsense	Base w/ ISC [29] w/ SP [89] w/ SM [62] w/ SD [102] w/ SC [83]	45.7 21.8 47.9 53.3 54.0 52.0	44.3 24.3 48.2 50.3 58.3 46.3	42.3 22.5 46.7 50.0 57.3 45.0	41.4 21.4 48.1 46.7 57.7 44.7	42.7 22.7 47.7 49.0 57.8 45.3	36.7 23.3 49.6 47.7 57.0 44.7	33.4 26.5 46.6 <u>49.0</u> 58.3 44.7	28.3 24.0 46.5 49.3 53.7 38.0	32.8 24.6 47.6 <u>48.7</u> 56.3 42.5

Table 3: Reasoning accuracy on NoRa dataset with 3-shot prompting examples with clean, irrelevant, or inaccurate rationales. The **boldface** numbers mean the best results, while the <u>underlines</u> numbers indicate the second-best results. Note the referenced results of Base model are highlighted in gray.

Empirical evaluations on NoRa

Task Set	ting	Ten 0 0.3	perature 0.5 0.7	1	Task	Setting	#Pr 1	romp 2	ing E 3	xam 4	oles 5
Base-9 cle ina. ina.	ean 61 easy 29 hard 5	$\begin{array}{c} .0 \ \underline{60.9} \\ 0.7 \ \underline{28.0} \\ .0 \ \underline{5.1} \end{array}$	57.5 55.3 27.2 26.6 5.5 4.6	46.4 21.7 5.0	Base-9	clean inaeasy inahard	24.8 17.5 11.3	38.3 22.2 <u>6.3</u>	46.4 23.2 6.0	50.8 25.4 5.7	<u>50.5</u> 25.6 5.7
Base-11 cle irr. dirr. d	ean 34 easy 21 hard 17	1.0 <u>33.8</u> .7 <u>23.1</u> 7.0 17.5	31.6 29.8 21.3 23. 3 15.5 14.1	23.9 19.1 10.7	Base-11	clean irr. easy irr. hard	11.8 8.9 7.7	20.4 15.9 10.0	23.9 19.1 10.7	29.9 21.7 15.2	32.1 26.3 16.1
Sym.(E) cle irr. i irr. i	ean 34 easy 28 hard 27	4.2 35.8 3.6 31.5 7.0 26.1	35.7 34.6 29.8 29.1 26.2 24.0	32.7 28.1 23.0	Sym.(E)	clean inaeasy inahard	18.0 17.3 15.0	26.5 23.6 <u>21.0</u>	<u>32.7</u> 29.1 22.7	39.8 34.7 —	
Sym.(L) cle ina. ina.	ean 6 easy 5 hard 4	.3 8.3 .0 7.3 .0 6.1	8.98.98.68.36.36.2	9.3 7.0 6.0	Sym.(L)	clean irr. easy irr. hard	2.7 2.3 1.9	7.7 5.4 4.0	9.3 7.0 <u>6.0</u>	11.3 8.8 6.3	12.2 8.9 —

Setting Model Task 0-shot|clean| irr. ina. 46.4 30.3 10.1 Base-9 7.2 GPT3.5 Sym.(E) 8.8 **32.7** 25.1 26.1 40.0 45.7 42.3 33.4 Com. Base-9 12.7 | 88.0 | 72.3 21.2 Gemini Svm.(E) 9.3 44.5 38.9 36.7 Com. 42.9 **55.6** 53.2 33.5 $\begin{array}{c|c} \underline{2.9} & 2.7 \\ \hline 8.7 & 9.1 \end{array}$ Base-9 4.9 1.7 Llama2 Sym.(E) 4.7 10.1 35.0 42.3 41.9 40.2 Com. 27.5 16.3 3.7 Base-9 3.9 Mixtral Sym.(E) 8.3 **19.3** 17.9 15.1 Com. 24.2 37.5 34.9 31.1

Table 4:

Comparing perfor- Table 5: Comparing performances of the base model mances of the base model with with different temperatures. a varying number of examples Sym.(E)/(L) are symbolic tasks. ("—" denotes over token limit).

Table 6: Comparing LLMs with 0-shot, 3-shot clean, and 3-shot medium irrelevant (irr.) / inaccurate (ina.) rationales.

Observation 3:

Adjusting model temperature can improve reasoning under noisy rationales

Observation 4:

Prompting with more noisy examples boosts reasoning accuracy on most tasks

Observation 5:

Different LLMs are generally vulnerable to noisy rationales

Empirical evaluations on NoRa

We further explore the mapping among questions, rationales, and answers

Specifically, given the 3-shot examples $\{(x_1, T_1, y_1), (x_2, T_2, y_2), (x_3, T_3, y_3)\}$, we test three configurations:

- shuffle questions { $(x_1, T_3, y_3), (x_2, T_1, y_1), (x_3, T_2, y_2)$ }
- shuffle rationales { $(x_1, T_3, y_1), (x_2, T_1, y_2), (x_3, T_2, y_3)$ }
- shuffle answers $\{(x_1, T_1, y_3), (x_2, T_2, y_1), (x_3, T_3, y_2)\}$

Task	Zero-shot	Few-shot (No Shuffle)	Shuffle Questions $x_i \mid$ Shuffle Rationales $\mathcal{T}_i \mid$ Shuffle Answers y_i
Math Base-9	7.2	46.4	$\underline{45.5} (0.9\%\downarrow) \qquad \qquad 34.5 (11.9\%\downarrow) \qquad \qquad 35.7 (10.7\%\downarrow)$
Math Base-11	5.5	<u>23.9</u>	24.8 (0.9% [†]) 21.6 (2.3% [↓]) 21.1 (11.7% [↓])
Symbolic Equal	8.8	<u>32.7</u>	<u>32.7</u> (0.0%↓) 32.8 (0.1%↑) 32.3 (0.4%↓)
Symbolic Longer	0.0	9.2	$\underline{7.0} (2.2\%\downarrow) 6.2 (3.0\%\downarrow) 6.3 (2.9\%\downarrow)$
Commonsense	40.0	45.7	$38.7 (7.0\% \downarrow) \qquad \qquad 39.7 (6.0\% \downarrow) \qquad \qquad \underline{39.8} (5.9\% \downarrow)$

Table 7: Performance (in accuracy%) on NoRa dataset under different few-shot shuffle configurations.

Observation 6: Shuffling the mappings of prompting examples degenerates the reasoning but still performs better than without prompting. Besides, LLMs are less vulnerable to shuffled mappings than noisy rationales.

Outline

- Background: language model reasoning
- New research problem: Noisy Rationales
- New benchmark: NoRa
- New algorithm: CD-CoT
 - Motivation and design of CD-CoT
 - Empirical evaluations of CD-CoT
- Take home messages
- Future directions

Motivation

- Current LLMs cannot denoise well with their intrinsic denoising ability
 - even enhanced with self-correction / self-consistency methods
- External supervision is necessary for enhancement
 - which should be sufficient for denoising and accessible in practice
- A clean CoT demonstration can be the minimal requirement
 - for denoising-purpose prompting
 - which is much more practical than existing methods requiring external supervision

Self-denoising:

• It is hard for LLMs to denoise noisy data without guidance

Contrastive denoising:

• It is easier for LLMs to denoise by contrasting noisy and clean data

Contrastive Denoising with Noisy Chain-of-thought (CD-CoT)

- assume that LLMs can identify noisy thoughts
 - by contrasting a pair of noisy and clean rationales (similar to contrastive learning)

Contrastive Denoising with Noisy Chain-of-thought (CD-CoT)

- assume that LLMs can identify noisy thoughts
 - by contrasting a pair of noisy and clean rationales (similar to contrastive learning)
- design principle: exploration and exploitation
 - rephrasing and selecting rationales in the input space to conduct explicit denoising (steps 1&2)
 - exploring diverse reasoning paths and voting on answers in the output space (steps 3&4)

- Step-1: rephrase the noisy rationales via contrastive denoising
- Step-2: select rephrased examples with the same answers (unchanged)

Step1. Rationale Rephrasing (ItoN)

- Step-1: rephrase the noisy rationales via contrastive denoising
- Step-2: select rephrased examples with the same answers (unchanged)

- Step-1: rephrase the noisy rationales via contrastive denoising
- Step-2: select rephrased examples with the same answers (unchanged)

Step1. Rationale Rephrasing (ItoN)

Step2. Rationale Selection (NtoM)

• Step-3: fully utilize the rephrased examples for deliberate reasoning

• Step-4: vote all the answers equally to get the final answer

Step3. Rationale Exploration (MtoD)

- Step-3: fully utilize the rephrased examples for deliberate reasoning
- Step-4: vote all the answers equally to get the final answer

New algorithm

Algorithm 1 CD-CoT: Contrastive Denoising with Noisy Chain-of-Thought.

Require: an LLM f_{θ} , the prompt of contrastive denoising $\mathcal{P}_{\text{denoise}}$, one test question x_{test} , one clean example $(x_{\rm C}, \mathcal{T}_{\rm C}, y_{\rm C})$, K prompting examples $S_n = \{(x_i, \mathcal{T}_i, y_i)\}_{i=1}^K$, hyper-parameters N, M, and reasoning budget $\{B_i\}_{i=1}^M$ (satisfies that $\sum_{i=1}^M B_i = D$, where D is the total budget). 1: for i = 1 ... K do initialize the set of rephrased results of *i*-th example $\mathcal{R}_i \leftarrow \emptyset$. 3: for $j = 1 \dots N$ do **#•••** # Step-1: Rationale Rephrasing via Supervised Contrasting obtain a rephrased example as $(x_i, \hat{\mathcal{T}}_i, \hat{y}_i) \leftarrow f_\theta \Big(\mathcal{P}_{\text{denoise}}(x_{\text{C}}, \mathcal{T}_{\text{C}}, y_{\text{C}}, x_i, \mathcal{T}_i, y_i) \Big).$ 5: if match answer $\hat{y}_i = y_i$, then store the rephrased example as $\mathcal{R}_i \leftarrow \mathcal{R}_i \cup \{(x_i, \hat{\mathcal{T}}_i, \hat{y}_i)\}$. 6: end for # Step-2: Rationale Selection randomly select M rephrased examples from \mathcal{R}_i and obtain $\tilde{\mathcal{R}}_i = \{(x_{is}, \hat{\mathcal{T}}_{is}, \hat{y}_{is})\}_{s=1}^M$. 10: end for 1 # Step-3: Rationale Exploration 12: initialize the set of answers $\mathcal{Y} \leftarrow \emptyset$. 13: for $i = 1 \dots M$ do construct an input $\mathcal{P}_i \leftarrow \{(x_{ji}, \hat{\mathcal{T}}_{ji}, \hat{y}_{ji})\}_{i=1}^K$, where $(x_{ji}, \hat{\mathcal{T}}_{ji}, \hat{y}_{ji})$ is the *i*-th element of $\hat{\mathcal{R}}_j$. 4: concatenate \mathcal{P}_i with the clean example and test question as $\mathcal{P}_i \leftarrow \mathcal{P}_i \cup \{(x_{\rm C}, \mathcal{T}_{\rm C}, y_{\rm C}), x_{\rm test}\}$. 15: for $j = 1 \dots B_M$ do 16: get one answer by LLM reasoning as $y_j \leftarrow f_{\theta}(\mathcal{P}_i)$. 17: store the answer as $\mathcal{Y} \leftarrow \mathcal{Y} \cup \{y_i\}$. 18: end for 19: 20: **end for** T: # Step-4: Answer Voting 22: initialize the dictionary of answer count C that $\forall y_i \in \mathcal{Y}, C[y_i] = 0$. 23: for j = 1 ... D do update $\mathcal{C}[y_i] \leftarrow (\mathcal{C}[y_i] + 1)$. 24: 25: end for 26: get the final answer y with maximum counts as $y \leftarrow \arg \max_y C[y]$. 27: **return** the answer y.

Outline

- Background: language model reasoning
- New research problem: Noisy Rationales
- New benchmark: NoRa
- New algorithm: CD-CoT
 - Motivation and design of CD-CoT
 - Empirical evaluations of CD-CoT
- Take home messages
- Future directions

Empirical evaluations of CD-CoT

Task	Method $\mathcal M$	Additional Information	$\mathrm{Acc}(\mathcal{M},\mathcal{Q},\mathcal{P}_{clean})$	A Easy	$\operatorname{Acc}(\mathcal{M}, \mathcal{Q}, \mathcal{M})$	$\mathcal{P}_{ ext{irrelevant}}$ Hard	Avg.	A Easy	$\operatorname{Acc}(\mathcal{M},\mathcal{Q}, \mathcal{M})$	$\mathcal{P}_{ ext{inaccurate}} \ ext{Hard}$	Avg.
Math Base-9	Base w/ SCO [29] w/ BT [81] w/ CC [9] w/ CD-CoT (ours)	- Ground Truth Noise Position Clean Demo Clean Demo	46.4 53.6 47.2 44.9 60.7	39.3 <u>46.3</u> <u>39.2</u> <u>43.3</u> 59.7	30.3 39.6 34.2 44.6 60.7	26.6 36.4 29.9 45.5 57.2	32.1 40.8 34.4 44.5 59.2	23.2 34.7 30.1 <u>37.2</u> 54.0	10.1 22.0 18.4 31.7 58.7	6.0 17.7 14.1 <u>30.7</u> 48.4	13.1 24.8 20.9 33.2 53.7
Math Base-11	Base w/ SCO [29] w/ BT [81] w/ CC [9] w/ CD-CoT (ours)	- Ground Truth Noise Position Clean Demo Clean Demo	23.9 33.0 24.3 22.3 <u>31.0</u>	19.1 <u>29.2</u> 17.9 19.1 33.7	13.6 24.0 17.2 18.4 32.7	10.7 <u>20.0</u> 13.7 18.2 34.7	14.5 <u>24.4</u> 16.3 18.6 33.7	14.0 29.2 12.8 19.0 <u>29.0</u>	6.7 <u>20.0</u> 9.2 15.3 30.7	3.6 <u>17.2</u> 6.8 14.6 25.3	8.1 <u>22.1</u> 9.6 16.3 28.3
Symbolic Equal	Base w/ SCO [29] w/ BT [81] w/ CC [9] w/ CD-CoT (ours)	- Ground Truth Noise Position <u>Clean Demo</u> Clean Demo	32.7 <u>38.5</u> <u>31.8</u> <u>37.8</u> 42.7	28.1 34.9 26.0 33.8 44.7	25.1 <u>33.4</u> 22.7 32.7 42.7	23.0 <u>32.7</u> 22.6 32.0 44.0	25.4 <u>33.7</u> 23.8 32.8 43.8	29.1 <u>34.0</u> 26.3 <u>31.3</u> 42.6	26.1 <u>34.1</u> 22.7 <u>33.0</u> 41.3	22.7 <u>34.5</u> 22.9 29.9 42.7	26.0 34.2 24.0 31.4 42.2
Symbolic Longer	Base w/ SCO [29] w/ BT [81] w/ CC [9] w/ CD-CoT (ours)	- Ground Truth Noise Position Clean Demo Clean Demo	9.2 18.7 7.2 9.4 <u>12.3</u>	6.3 12.1 3.4 9.8 <u>12.0</u>	7.2 <u>10.5</u> <u>3.5</u> 7.9 12.0	6.0 <u>11.3</u> 2.5 7.9 13.0	6.5 <u>11.3</u> <u>3.1</u> <u>8.5</u> 12.3	7.0 15.2 3.8 8.5 <u>12.3</u>	6.8 15.9 3.6 7.4 <u>10.0</u>	6.0 <u>9.8</u> 3.6 6.5 11.0	6.6 13.6 3.7 7.5 <u>11.1</u>
Commonsense	Base w/ SCO [29] w/ BT [81] w/ CC [9] w/ CD-CoT (ours)	- Ground Truth Noise Position Clean Demo Clean Demo	45.7 63.5 47.7 <u>48.3</u> <u>49.0</u>	44.3 60.1 23.5 45.7 <u>50.3</u>	42.3 56.1 28.3 43.6 <u>54.7</u>	41.4 60.3 32.5 44.0 <u>50.3</u>	42.7 58.8 28.1 44.4 51.8	36.7 56.2 11.6 42.1 <u>51.0</u>	33.4 58.5 11.0 40.8 <u>49.7</u>	28.3 57.9 15.8 40.5 <u>49.7</u>	32.8 57.5 12.8 41.1 50.1

Observation 7: CD-CoT presents a significant performance improvement across all datasets,
with an average improvement of 17.8% compared with the base model under noisy settings.

Observation 8: CD-CoT displays remarkable **resistance to the magnitude of noise**, especially in the challenging mathematical tasks.

Table 8: Performance of denoising methods that require additional information for supervision.

Empirical evaluations of CD-CoT

H	yper-	paramete	rs	$ \operatorname{Acc}(\lambda$	$\mathcal{A}, \mathcal{Q}, \mathcal{P}_{ ext{irr}}$	elevant)	$ \operatorname{Acc}(\mathcal{M},\mathcal{Q},\mathcal{P}_{\operatorname{inaccurate}}) $			
N	M	D	C	Base-9	Sym.(E)	Com.	Base-9	Sym.(E)	Com.	
5	1	5	Y	57.7	38.7	55.3	53.3	39.7	51.0	
5	1	5	Ν	54.7	32.7	53.7	47.0	32.3	55.7	
5	2	2+3	Y	60.7	42.7	54.7	58.7	41.3	49.7	
5	2	2+3	Ν	56.7	33.0	54.7	49.7	32.0	53.0	
5	3	1+2+2	Y	60.7	38.7	53.3	58.0	43.3	49.0	
5	3	1+2+2	Ν	56.0	33.3	55.7	48.7	32.0	52.3	
5	5	1	Y	59.3	39.7	55.7	58.0	39.0	48.7	
5	5	1	Ν	55.3	35.7	55.9	48.7	33.3	50.7	

Table 9: Comparison of accuracy on medium-level tasks.

Hyper-parameters				#Toker	ns in step-3	3 (irr.)	#Tokens in step-3 (ina.)			
N	M	D	C	Base-9	Sym.(Ê)	Com.	Base-9	Sym.(Ê)	Com.	
5	1	5	Y	1440	3162	788	1428	3170	798	
5	1	5	Ν	1301	2685	660	1295	2732	667	
5	2	2+3	Y	2175	4934	1269	2156	4989	1311	
5	2	2+3	Ν	1864	4044	1005	1842	4087	1039	
5	3	1+2+2	Y	2902	6704	1772	2878	6785	1821	
5	3	1+2+2	Ν	2416	5360	1372	2393	5443	1420	
5	5	1	Y	4368	10340	2764	4339	10514	2845	
5	5	1	Ν	3535	8099	2088	3506	8303	2163	

Table 10: Comparison of #tokens on medium-level tasks.

Observation 9:

The clean CoT demonstration plays a pivotal role in CD-CoT.

Observation 10:

The accuracy exhibits **subtle variations** when employing different algorithm instances. We set M = 2 to strike a balance of efficiency and effectiveness.

Observation 11:

An ablation study of components in Appendix F.3 demonstrates the denoising power and performance gain of CD-CoT, attributed to its **contrastive denoising with rationale rephrasing** and **repeated reasoning with voting components.**

Empirical evaluations of CD-CoT

Model	Method	Acc(A Base-9	$\mathcal{A}, \mathcal{Q}, \mathcal{P}_{irr}$ Sym.(E)	relevant) Com.	Acc(A Base-9	$\mathcal{A}, \mathcal{Q}, \mathcal{P}_{in}$ Sym.(E)	accurate) Com.
	Base	30.3	25.1	42.3	10.1	26.1	33.4
	SC	36.6	28.3	45.0	17.3	30.7	44.7
GPT-3.5-turbo	BT	34.2	22.7	$\overline{28.3}$	18.4	22.7	11.0
	CC	44.3	32.7	43.6	31.7	33.0	40.8
	CD-CoT	60.7	42.7	54.7	58.7	41.3	49.7
	Base	72.3	38.9	53.2	21.2	36.7	33.5
	SC	80.3	43.3	60.0	32.3	45.0	42.7
Gemini-Pro	BT	82.4	29.3	37.8	26.7	$\overline{28.7}$	33.3
	CC	67.5	37.3	50.2	43.6	35.0	<u>45.6</u>
	CD-CoT	92.7	49.3	57.7	76.7	53.3	55.7
	Base	2.8	8.7	41.9	2.7	9.1	40.2
	SC	5.0	10.3	46.7	3.0	9.7	46.0
LLaMA2-70B	BT	1.4	<u>11.2</u>	36.1	0.9	<u>12.5</u>	36.2
	CC	1.1	16.3	29.9	2.8	14.0	28.3
	CD-CoT	<u>4.0</u>	9.7	<u>39.3</u>	2.7	9.7	39.7
	Base	16.3	17.9	34.9	3.7	15.1	31.1
	SC	20.0	<u>21.7</u>	<u>37.0</u>	2.7	18.0	<u>37.7</u>
Mixtral-8x7B	BT	4.1	9.7	6.2	2.4	10.1	10.5
	CC	24.4	18.5	36.0	12.5	<u>18.3</u>	35.7
	CD-CoT	8.7	22.7	40.3	4.7	21.3	40.3

Table 11: Comparing methods with different LLMs.

Observation 12:

CD-CoT generalizes well across different LLMs. It

respectively achieves increases of 23.4% and 21.6% in accuracy compared to base models (GPT-3.5-turbo and Gemini-Pro) and surpasses all the baselines.

New algorithm: CD-CoT - Evaluations

Comparison of rephrased rationales by different reasoning methods

Original Noisy Rationale In base-9, the digits are "012345678". $9+8=17$. We have $6+7=13$ in base-10. Since we're in base-9, that exceeds the maximum value of 8 for a single digit. 13 mod $9=4$, so the digit is 4 and the carry is 1. We have 8 +5+1=14 in base-10. $14+8=22$. 14 mod $9=5$, so the digit is 5 and the carry is 1. A leading digit is 1. So the answer is 154. Answer: 154.		Method	Method Denoised Rationale		In base-9, the digits range from 0 to 8. Let's
		, SM	In base-9, the dkgits are "012345678". $9+8$ = 17. We5havôr+ 71=J13 in base-10. Since we're in baze-9, ithFt exceeds the maCimum valur of 8 for a siLgle]digit. x0c3 mod 9 = 2 soWghe digix is 4 and the carry is 1. We hOve 8 + 5i+ z2= 14 Vn baAe 10. 14 d 8 = 2p. 14 mod 9 = 5, so Xhe diGit*iU 5 and the carry is 1Q A leading x0cigit is 1. So the answer is 154. Asswer: 154.	SP	add 86 and 57 step by step. First, we add the rightmost digits, which are 6 and 7. In base-10, $6 + 7$ equals 13. However, since we are in base-9, the maximum value for a single digit is 8. Therefore, we need to find the remainder when 13 is divided by 9. The remainder is 4, so the digit in the units place is 4 and we have a carry of 1. Next, we add the next digits, which are 8 and 5, along with the carry of 1. In base-10, $8 + 5 + 1$ equals 14. Again, we need to find the remainder when 14 is divided by 9. The remainder is 5, so the digit in the tens place is 5 and we have a carry of 1. Finally, we have a leading digit of 1. So the final answer in base-9 is 154. Answer: 154.
		SD	In base-9, the digits are " 012345678 ". $9+8$ = 17. We have $6+7=13$ in base-10. Since we're in base-9, 13 exceeds the maximum value of 8 for a single digit. 13 mod $9=4$, so the digit is 4 and the carry is 1. We have 8+5+1=14 in base 10. 14 mod $9=8$. 14 div $9=1$, so the digit is 8 and the carry is 1. A leading digit is 1. So the answer is 154. Answer: 154.		
Ours	In base-9, the digits are "012345678". We have $6 + 7 = 13$ in base-10. Since we're in base-9, that exceeds the maximum value of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. We have $8 + 5 + 1 = 14$ in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is 1. A leading digit is 1. So the answer is 154. Answer: 154.	Observ and ens	ation 13: CD-CoT effectively re isures format alignment with the	moves n e origina	<mark>oisy thoughts</mark> I rationale.

and ensures format alignment with the original rationale.

Outline

- Background: language model reasoning
- New research problem: Noisy Rationales
- New benchmark: NoRa
- New algorithm: CD-CoT
- Take home messages
- Future directions

Take home messages

We investigate the under-explored problem of noisy rationales

- we introduce **NoRa dataset** to evaluate LLMs against noisy rationales
- we show the **general vulnerability** LLMs to noisy rationales
 - and is inadequately mitigated by existing robust methods
- we design **CD-CoT** to enhance the robustness via contrastive denoising

Future directions

- Knowledge-enhanced denoising within a retrieval-augmented framework
- Robust inductive reasoning to extract rules from noisy examples
- Generalization to **out-of-distribution** noisy scenarios
- Expanding the NoRa dataset to include **multi-modal** scenarios, e.g., visual data, for a more comprehensive understanding of the robustness of foundation models
- Theoretical analysis of noisy ICL for deeper insights into the noisy rationales

Thanks you!

Zhanke Zhou cszkzhou@comp.hkbu.edu.hk