KGTuner: Efficient Hyper-parameter Search for Knowledge Graph Learning

Yongqi Zhang, Zhanke Zhou, Quanming Yao, Yong Li Research Scientist, 4Paradigm Inc. zhangyongqi@4paradigm.com 2022, 4, 20

Outline

- Background
 - Review of knowledge graph learning
- A comprehensive understanding of HP in KG learning
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

Background – Knowledge Graph (KG)

Graph representation: $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{S})$.

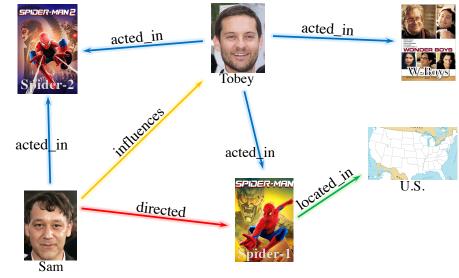
Entities \mathcal{E} : real world objects or abstract concepts.

Relations \mathcal{R} : interactions between/among entities.

Fact/triples S: the basic unit in form of (head entity, relation, tail entity), (h, r, t).

Google

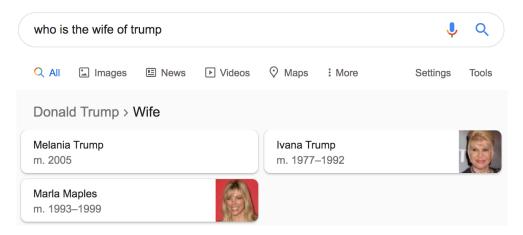
Knowledge Graph

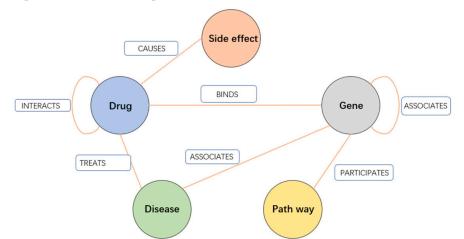

KG is a semantic graph

- Semantic information
- Structural information

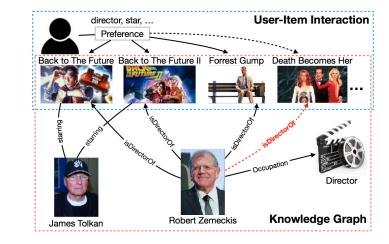
WIKIDATA

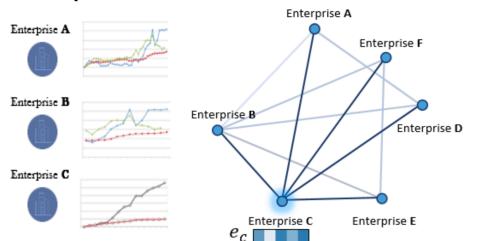
4Paradigm Sage Knowledge Base


低门槛、全流程知识图谱构建平台


Free**base**®

Representative applications


KGQA:


Drug discovery:

Recommendation:

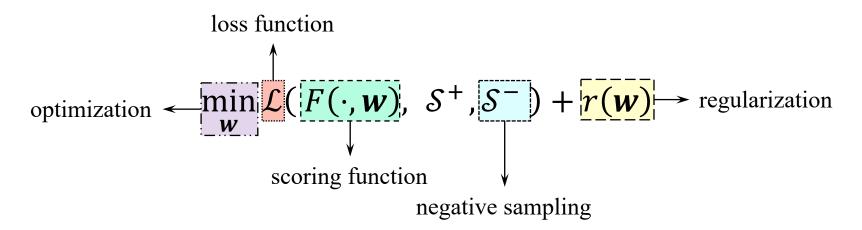
Stock prediction:

4

Background – Knowledge Graph Learning

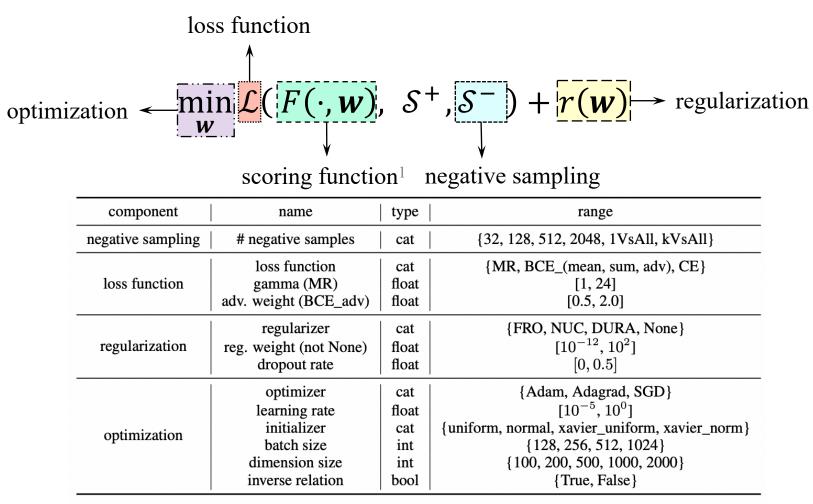
symbols representations SPINER-MAN acted in acted_in W-Boys acted in Sam Tobev influences Spider-1 O directed acted in acted in located in located in U.S U.S. SPIDER-MAN ... directed

Advantages:


- Continuous, ease of use in ML pipeline.
- Discover latent properties.
- Efficient similarity search.

Background – Machine learning on Knowledge Graph

For setting up a KG learning system, we need


- A scoring function F to measure the plausibility triplets
- A sampling scheme to generate **negative samples** S⁻
- A loss function *L* and regularization *r* to define the learning problem
- An optimization strategy for convergence procedure

We can formulate the learning framework as:

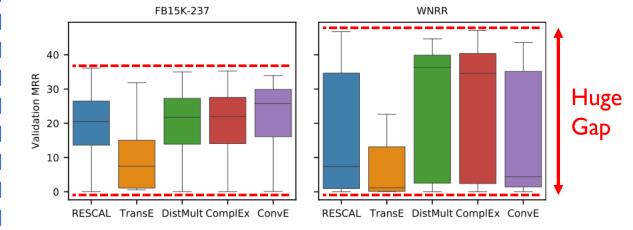
Background – Machine learning on Knowledge Graph

Key components and related hyper-parameters (HPs)

I: Note that HPs in SF are not covered here

Background – Machine learning on Knowledge Graph

Key components and related hyper-parameters

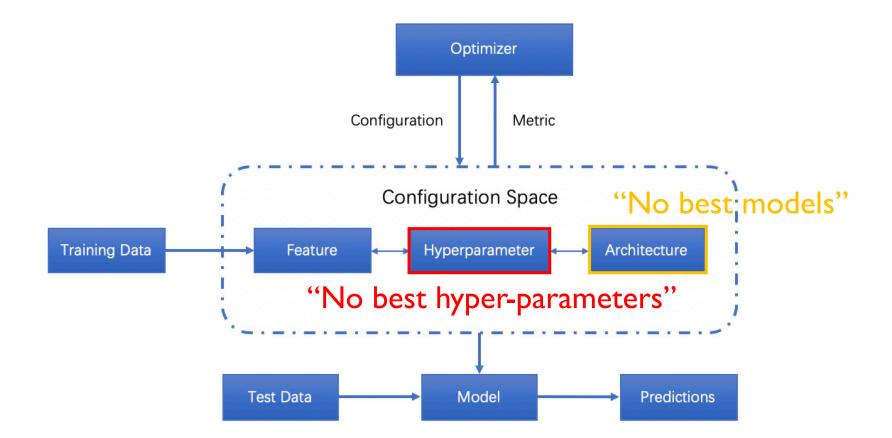

hvper-parameter

name	type	range	# negative samples	512
# negative samples	cat	{32, 128, 512, 2048, 1VsAll, kVsAll}	loss function	BCE_adv
loss function	cat	{MR, BCE (mean, sum adv), CE}	gamma	0.00
gamma (MR)	float	[1, 24] 0.00	adv. weight	0.57
adv. weight (BCE_adv)	float	[0.5, 2.0] 0.57	regularizer	DURA
regularizer	cat	FRO, NUC, DURA, None}	e	$8.64 * 10^{-3}$
reg. weight (not None)	float	$[10^{-12}, 10^2]$ 8.64 * 10 ⁻³	0 0	0.04 * 10
dropout rate	float	[0, 0.5] 0.25		0.23
optimizer	cat	{Adam, Adagrad, SGD}	optimizer	Adam
learning rate	float	$[10^{-5}, 10^{0}]$ 1.77 * 10 ⁻²	learning rate	$1.77 * 10^{-3}$
initializer	cat	{uniform, normal, xavier_uniform, xavier_norm}	initializer	xavier_norm
batch size	int	{128, 256 512 1024}		512
				1000
inverse relation	bool	{ True, False		False
	<pre># negative samples loss function gamma (MR) adv. weight (BCE_adv) regularizer reg. weight (not None) dropout rate optimizer learning rate initializer</pre>	# negative samplescatloss function gamma (MR)catadv. weight (BCE_adv)floatadv. weight (BCE_adv)floatregularizer reg. weight (not None) dropout ratecatfloatfloatoptimizer initializer batch size dimension sizecat	# negative samplescat{32, 128, 512, 2048, 1VsAll, kVsAll, kVsAll}loss function gamma (MR)cat float{MR, BCE_(mean, sum_adv), CE} [1, 24]0.00 0.57adv. weight (BCE_adv)float[1, 24]0.00 0.570.57regularizer reg. weight (not None) dropout ratecat floatFRO. NUC, DURA_None} [10^{-12}, 10^2]8.64 * 10^3 0.25optimizer initializer batch size dimension sizecat initializer int int [10, 200, 500, 1000, 2000]1.77 * 10^2	# negative samplescat{32, 128 512, 2048, 1VsAll, kVsAll}loss function gamma (MR)loss function floatloss function gamma (MR)cat{MR, BCE_(mean, sum adv, CE}loss function gammaadv. weight (BCE_adv)float[1, 24]0.000.570.57regularizer reg. weight (not None) dropout ratecatFRO, NUC, DURA None }regularizer reg. weight (not None) floatfloat[10^{-12}, 10^2]8.64 * 10^30.25optimizer initializer batch size dimension sizecat{Adam, Adagrad, SGD}0.25optimizer learning rate initializer (100, 200, 500, 1000, 2000)optimizer batch sizecat{Adam, Adagrad, SGD}earning rate initializerbatch size dimension sizeint{128, 256 512 1024}1004batch sizebatch sizeintint{100, 200, 500, 1000, 2000}2000}interviewbatch size

A configuration

Background – review of KGE models

		RESCAL	TransE	DistMult	ComplEx	ConvE
Vali	d. MRR	36.1	31.5	35.0	35.3	34.3
Eml	o. size	128 (-0.5)	512 (-3.7)	256 (-0.2)	256 (-0.3)	256 (-0.4)
E Bate	ch size	512 (-0.5)	128 (-7.1)	1024 (-0.2)	1024 (-0.3)	1024 (-0.4)
γ Trai	n type	1vsAll (-0.8)	NegSamp -	NegSamp (-0.2)	NegSamp (-0.3)	1vsAll (-0.4)
	s	CE (-0.9)	CE (-7.1)	CE (-3.1)	CE (-3.8)	CE (-0.4)
a Opt	imizer	Adam (-0.5)	Adagrad (-3.7)	Adagrad (-0.2)	Adagrad (-0.5)	Adagrad (-1.5)
	alizer	Normal (-0.8)	XvNorm (-3.7)	Unif. (-0.2)	Unif. (-0.5)	XvNorm (-0.4)
Reg	ularizer	None (-0.5)	L2 (-3.7)	L3 (-0.2)	L3 (-0.3)	L3 (-0.4)
Rec	iprocal	No (-0.5)	Yes (-9.5)	Yes (-0.3)	Yes (-0.3)	Yes –
Vali	d. MRR	46.8	22.6	45.4	47.6	44.3
Eml	o. size	128 (-1.0)	512 (-5.1)	512 (-1.1)	128 (-1.0)	512 (-1.2)
Bate	ch size	128 (-1.0)	128 (-5.1)	1024 (-1.1)	512 (-1.0)	1024 (-1.3)
😤 Trai	n type	KvsAll (-1.0)	128 (-5.1) NegSamp – CE (-5.1)	KvsAll (-1.1)	1vsAll (-1.0)	KvsAll (-1.2)
Ž Los	s	CE (-2.0)	CE (-5.1)	CE (-2.4)	CE (-3.5)	CE (-1.4)
	imizer		Adagrad (-5.8)		Adagrad (-1.5)	Adam (-1.4)
Initi	alizer	Unif. (-1.0)	XvNorm (-5.1)	Unif. (-1.3)	Unif. (-1.5)	XvNorm (-1.4)
Reg	ularizer	L3 (-1.2)	L2 (-5.1)	L3 (-1.1)	L2 (-1.0)	L1 (-1.2)
Rec	iprocal	Yes (-1.0)	Yes (-5.9)	Yes (-1.1)	No (-1.0)	Yes –



No best hyper-parameters 🤪

			FB1	5k			WN	18			FB15k	-237			WN1	8RR			YAG	03-10	
		H@1	H@10	MR	MRR	H@1	H@10	MR	MRR	H@1	H@10	MR	MRR	H@1	H@10	MR	MRR	H@1	H@10	MR	MRR
sla	DistMult	73.61	86.32	173	0.784	72.60	94.61	675	0.824	22.44	49.01	199	0.313	39.68	50.22	5913	0.433	41.26	66.12	1107	0.50
Mode	ComplEx	81.56	90.53	34	0.848	94.53	95.50	3623	0.949	25.72	52.97	202	0.349	42.55	52.12	4907	0.458	50.48	70.35	1112	0.57
osition	ANALOGY	65.59	83.74	126	0.726	92.61	94.42	808	0.934	12.59	35.38	476	0.202	35.82	38.00	9266	0.366	19.21	45.65	2423	0.28
Tensor Decomposition Models	SimplE	66.13	83.63	138	0.726	93.25	94.58	759	0.938	10.03	34.35	651	0.179	38.27	42.65	8764	0.398	35.76	63.16	2849	0.45
sor De	HolE	75.85	86.78	211	0.800	93.11	94.94	650	0.938	21.37	47.64	186	0.303	40.28	48.79	8401	0.432	41.84	65.19	6489	0.50
Ten	TuckER	72.89	88.88	39	0.788	94.64	95.80	510	<u>0.951</u>	25.90	53.61	162	0.352	42.95	51.40	6239	0.459	46.56	68.09	2417	0.54
	TransE	49.36	84.73	45	0.628	40.56	94.87	279	0.646	21.72	49.65	209	0.31	2.79	49.52	3936	0.206	40.57	67.39	1187	0.50
lodels	STransE	39.77	79.60	69	0.543	43.12	93.45	208	0.656	22.48	49.56	357	0.315	10.13	42.21	5172	0.226	3.28	7.35	5797	0.04
Geometric Models	CrossE	60.08	86.23	136	0.702	73.28	95.03	441	0.834	21.21	47.05	227	0.298	38.07	44.99	5212	0.405	33.09	65.45	3839	0.44
Geom	TorusE	68.85	83.98	143	0.746	94.33	95.44	525	0.947	19.62	44.71	211	0.281	42.68	53.35	4873	0.463	27.43	47.44	19455	0.34
	RotatE	73.93	88.10	42	0.791	94.30	<u>96.02</u>	274	0.949	23.83	53.06	178	0.336	42.60	<u>57.35</u>	3318	0.475	40.52	67.07	1827	0.49
s	ConvE	59.46	84.94	51	0.688	93.89	95.68	413	0.945	21.90	47.62	281	0.305	38.99	50.75	4944	0.427	39.93	65.75	2429	0.48
Mode	ConvKB	11.44	40.83	324	0.211	52.89	94.89	202	0.709	13.98	41.46	309	0.230	5.63	52.50	3429	0.249	32.16	60.47	1683	0.42
arning	ConvR	70.57	88.55	70	0.773	94.56	95.85	471	0.950	25.56	52.63	251	0.346	43.73	52.68	5646	0.467	44.62	67.33	2582	0.52
Deep Learning Models	CapsE	1.93	21.78	610	0.087	84.55	95.08	233	0.890	7.34	35.60	405	0.160	33.69	55.98	720	0.415	0.00	0.00	60676	0.00
ŏ	RSN	72.34	87.01	51	0.777	91.23	95.10	346	0.928	19.84	44.44	248	0.280	34.59	48.34	4210	0.395	42.65	66.43	1339	0.51
	_																				
	AnyBURL	81.09	87.86	288	0.835	94.63	95.96	233	0.951	24.03	48.93	480	0.324	44.93	55.97	2530	0.485	45.83	66.07	815	0.52

No best models

Background – from the AutoML scope

https://awesomeopensource.com/project/hibayesian/awesome-automl-papers

Background – review of HPO methods

Taxonomy	Examples	Cons			search algorithm
ampled-based	Grid search	Low efficiency		<i>x</i> ~	
	Random search	Can not learn from historical records		ļ	odate
Bayesian	Hyperopt (TPE) [1]	Slow feedback from		evaluate on	
optimization SMAC (RF) ^[2]		the original KG		$\begin{array}{c} \checkmark & \text{full graph } D \\ \mathbf{x} & \longrightarrow \mathcal{M}(P) \end{array}$	$F(P^*, \mathbf{x}), D_{val})$
	Ax (GP) ^[3]		G		θ.
	AutoNE ^[4]	(Subgraph-based)			$P_1 \xrightarrow{\theta_1} \theta_2$ IE Alg. $P_2 \xrightarrow{\theta_2} \theta_2$
e-AutoGR ^[5]		No specialized designs for KGE	••••	G_2	$f_M(\overline{\theta_i}, G_i)$ θ_n
	φ(HP configurati	$on) \rightarrow Performance$			gnature $h(G_1)$
				Ext	traction $\frac{n(\theta_2)}{\dots}$

Sampling

[1] Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms.

- [2] Sequential model-based optimization for general algorithm configuration.
- [3] https://github.com/facebook/Ax
- [4] Autone: Hyperparameter optimization for massive network embedding.
- [5] Explainable automated graph representation learning with hyperparameter importance.

 $Max_{\theta_G} P_G$

Motivation and Objective

Weakness of existing works

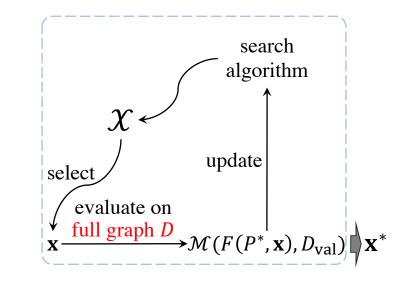
Low efficiency in searching for HP configuration

- usually in a time-consuming trial-and-error way
- interaction, importance, and tunability of HPs are unclear
- lacking understanding of KGE components

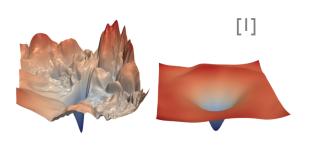
Objective of KGbench:

- Design a searching algorithm,
- for any given dataset and embedding model with limited budget,
- to efficiently search for the hyper-parameter configuration.

Outline


- Background
- A comprehensive understanding of HP in KGE
 - search space
 - validation curvature
 - evaluation cost
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

Motivation and Objective


HP searching problem setup

Definition 1 (Hyper-parameter search for KG embedding). *The problem of HP search for KG embedding model is formulated as*

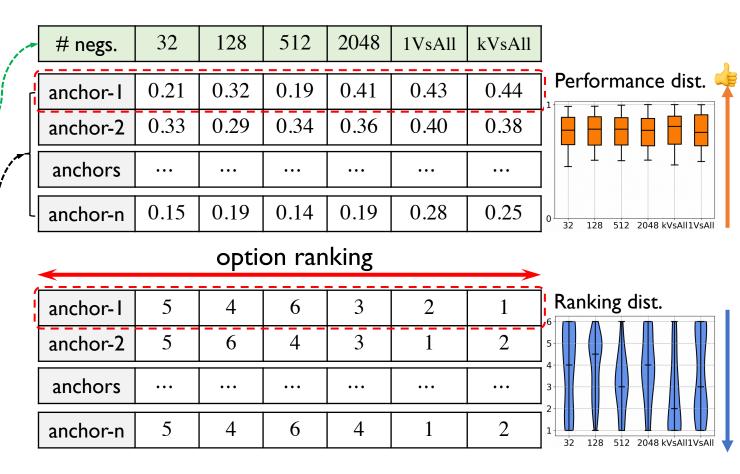
$$\mathbf{x}^{*} = \arg \max_{\mathbf{x} \in \mathcal{X}} \mathcal{M} \big(F(\boldsymbol{P}^{*}, \mathbf{x}), D_{val} \big), \quad (2)$$
$$\boldsymbol{P}^{*} = \arg \min_{\boldsymbol{P}} \mathcal{L} \big(F(\boldsymbol{P}, \mathbf{x}), D_{tra} \big). \quad (3)$$

Three major aspects for efficiency in Def. I 1. the size of search space χ 2. the validation curvature of \mathcal{M} 3. the evaluation cost in solving $argmin_{\mathcal{P}}$

Recall the search space

Three major aspects for efficiency in Def. I 1. the size of search space χ 2. the validation surrature of M

- 2. the validation curvature of $\mathcal M$
- 3. the evaluation cost in solving $argmin_{\mathcal{P}}$

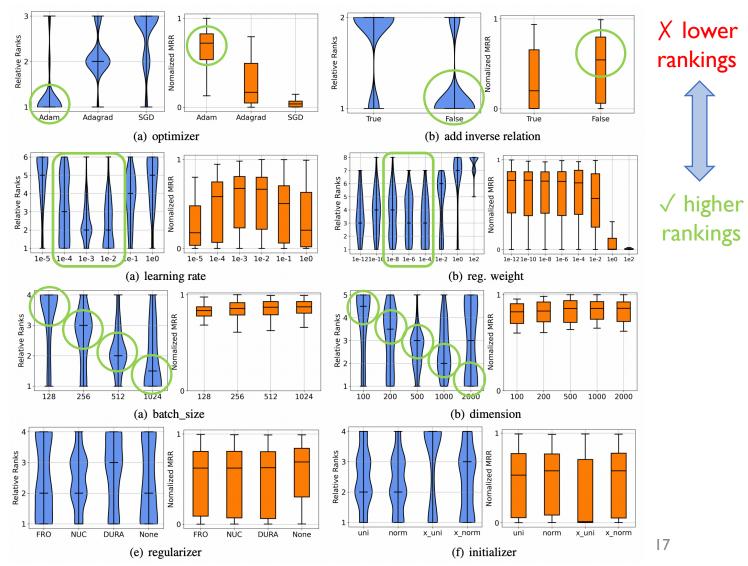

name	type	range
# negative samples	cat	{32, 128, 512, 2048, 1VsAll, kVsAll}
loss function	cat	{MR, BCE_(mean, sum, adv), CE}
gamma (MR)	float	[1, 24]
adv. weight (BCE_adv)	float	[0.5, 2.0]
regularizer	cat	{FRO, NUC, DURA, None}
reg. weight (not None)	float	$[10^{-12}, 10^2]$
dropout rate	float	[0, 0.5]
optimizer	cat	{Adam, Adagrad, SGD}
learning rate	float	[10 ⁻⁵ , 10 ⁰]
initializer	cat	{uniform, normal, xavier_uniform, xavier_norm}
batch size	int	{128, 256, 512, 1024}
dimension size	int	{100, 200, 500, 1000, 2000}
inverse relation	bool	{True, False}

Questions to be answered

- What are the properties of each HP?
 - ranking distribution
 - consistency
 - computing cost
- Can we decrease the range for each HP?
 - Can we decouple some HPs?

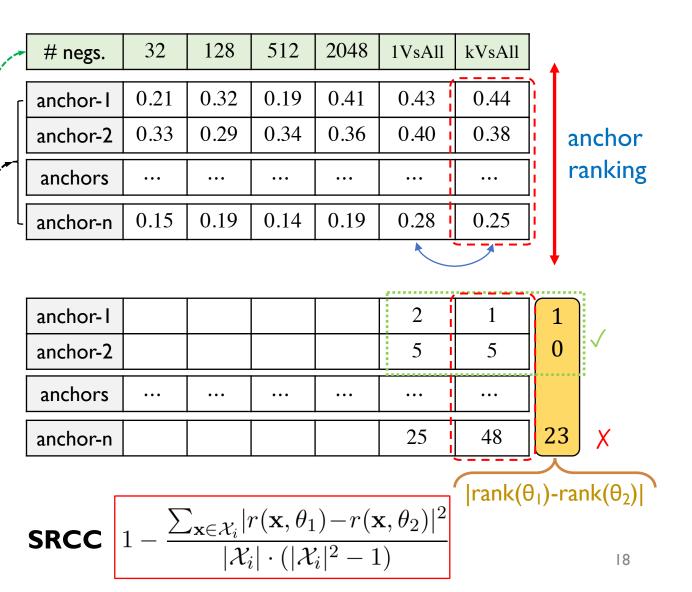
Excavating properties of HPs

name	type	range
# negative samples	cat	{32, 128, 512, 2048, 1VsAll, kVsAll}
loss function	cat	{MR, BCE_(mean, sum, adv), CE}
gamma (MR)	float	[1, 24]
adv. weight (BCE_adv)	float	[0.5, 2.0]
regularizer	cat	{FRO, NUC, DURA, None}
reg. weight (not None)	float	$[10^{-12}, 10^2]$
dropout rate	float	[0, 0.5]
optimizer	cat	{Adam, Adagrad, SGD}
learning rate	float	$[10^{-5}, 10^{0}]$
initializer	cat	{uniform, normal, xavier_uniform, xavier_norm}
batch size	int	{128, 256, 512, 1024}
dimension size	int	{100, 200, 500, 1000, 2000}
inverse relation	bool	{True, False}

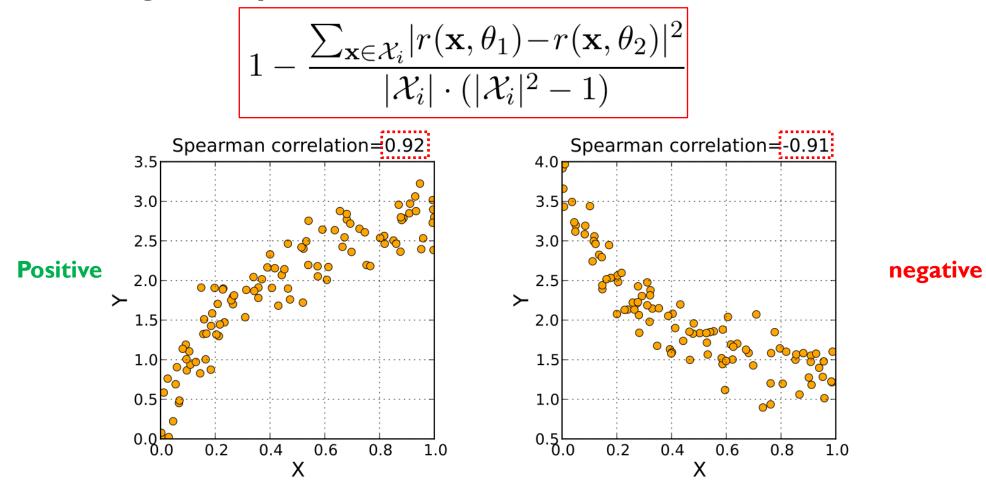


[1] Design Space for Graph Neural Networks

Excavating properties of HPs | Ranking/Performance distribution


The HPs can be classified into 4 groups

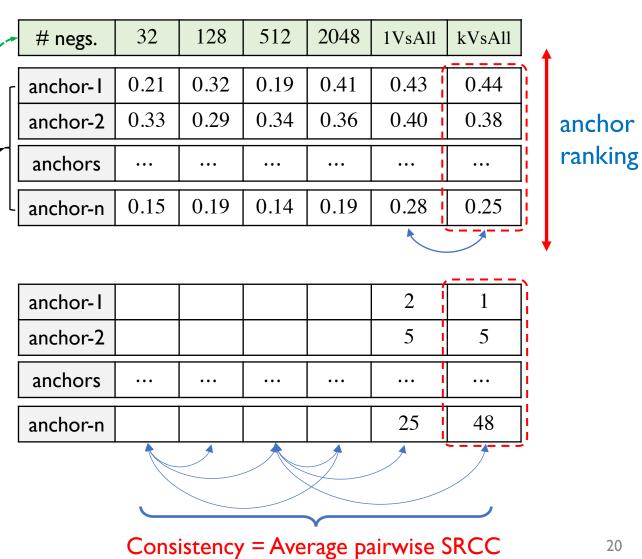
- I. reduced options
- 2. shrunken range
- 3. monotonously related
- 4. no obvious patterns


Excavating properties of HPs

name	type	range
# negative samples	cat	{32, 128, 512, 2048, 1VsAll, kVsAll}
loss function	cat	{MR, BCE_(mean, sum, adv), CE}
gamma (MR)	float	[1, 24]
adv. weight (BCE_adv)	float	[0.5, 2.0]
regularizer	cat	{FRO, NUC, DURA, None}
reg. weight (not None)	float	$[10^{-12}, 10^2]$
dropout rate	float	[0, 0.5]
optimizer	cat	{Adam, Adagrad, SGD}
learning rate	float	$[10^{-5}, 10^0]$
initializer	cat	{uniform, normal, xavier_uniform, xavier_norm}
batch size	int	{128, 256, 512, 1024}
dimension size	int	{100, 200, 500, 1000, 2000}
inverse relation	bool	{True, False}

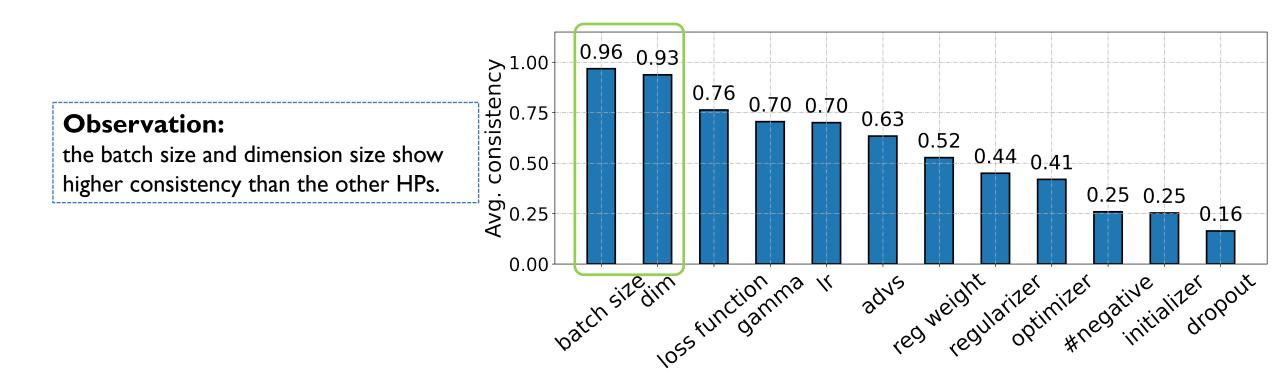
[1] Design Space for Graph Neural Networks

Positive and negative Spearman rank correlations



https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Excavating properties of HPs


	tuno	-
name	type	range
# negative samples	cat	{32, 128, 512, 2048, 1VsAll, kVsAll}
loss function	cat	{MR, BCE_(mean, sum, adv), CE}
gamma (MR)	float	[1, 24]
adv. weight (BCE_adv)	float	[0.5, 2.0]
	inout	[0.0, 2.0]
regularizer	cat	{FRO, NUC, DURA, None}
reg. weight (not None)	float	$[10^{-12}, 10^2]$
dropout rate	float	[0, 0.5]
optimizer	cat	Adam, Adagrad, SGD}
learning rate	float	$[10^{-5}, 10^{0}]$
initializer	cat	{uniform, normal, xavier_uniform, xavier_norm}
batch size	int	{128, 256, 512, 1024}
dimension size	int	{100, 200, 500, 1000, 2000}
inverse relation		{100, 200, 500, 1000, 2000} {True, False}
	bool	{ fluc, raise }

enumerating sampling anchors [1] •••••

[1] Design Space for Graph Neural Networks

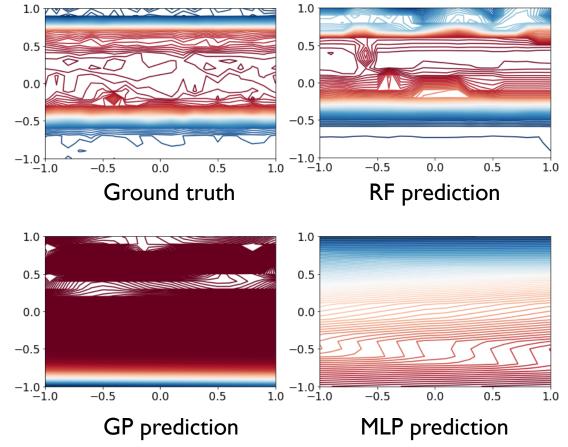
Excavating properties of HPs | Consistency

Outline

- Background
- A comprehensive understanding of HP in KGE
 - search space
 - validation curvature
 - evaluation cost
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

Excavating properties of HPs | from the aspect of predictor

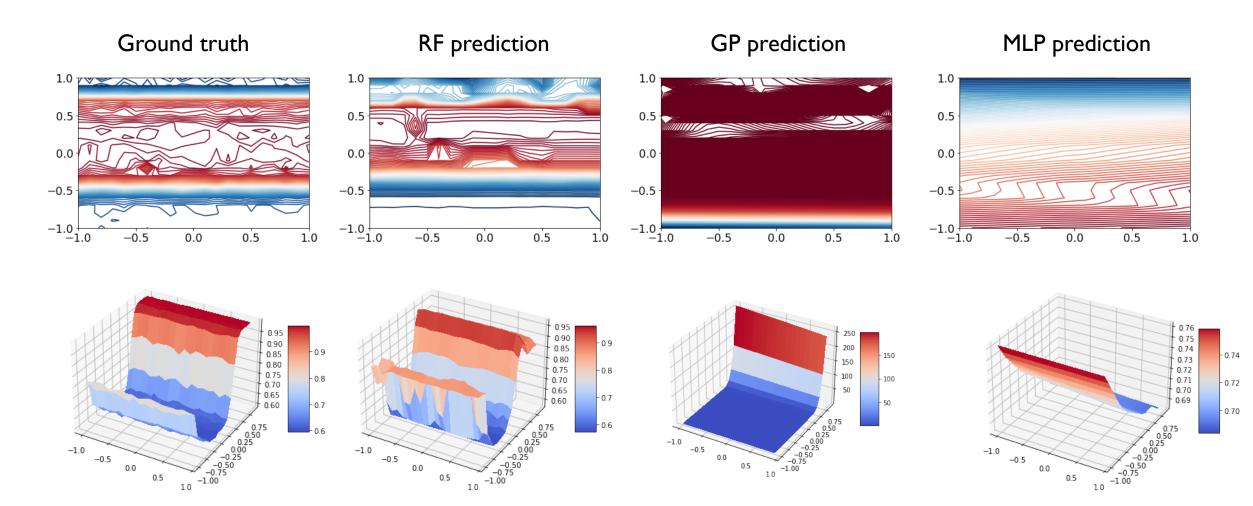
Predictors


- Gaussian process (GP) •
- Multi layer perceptron (MLP)
- Random forest (RF)

Observation:

RF is better in approximating the curvature

# train configurations	10	20	30		
GP	$0.0693 {\pm} 0.02$	$0.029 {\pm} 0.01$	$0.019{\pm}0.01$		
MLP	2.121 ± 0.4	$2.052{\pm}0.3$	$0.584{\pm}0.1$		
RF	<u>0.003±0.002</u>	$\underline{\textbf{0.002}{\pm 0.001}}$	<u>0.001±0.001</u>		
MSE results					


Validation curvature

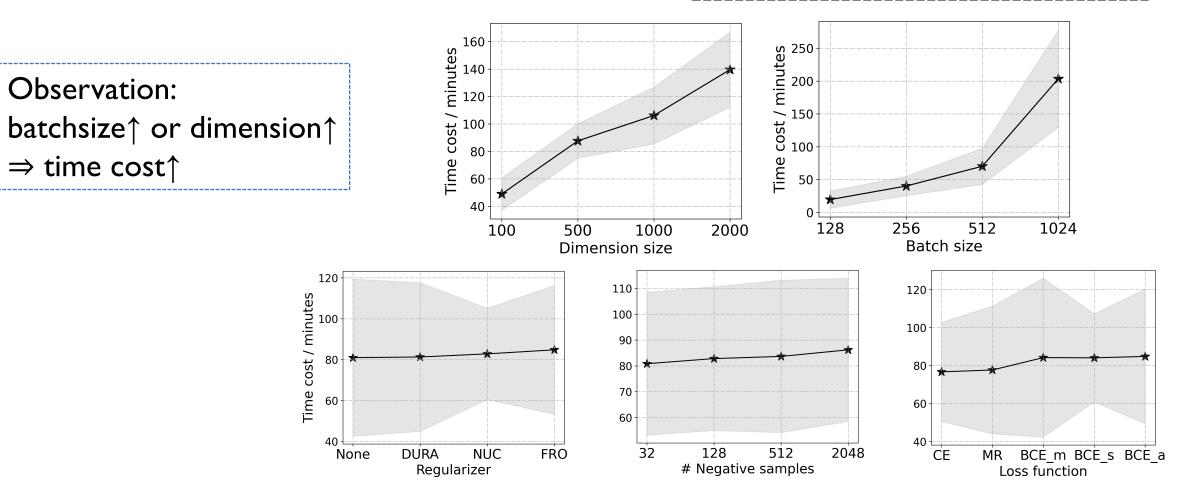
HP range2

range

Excavating properties of HPs | from the aspect of predictor

Outline

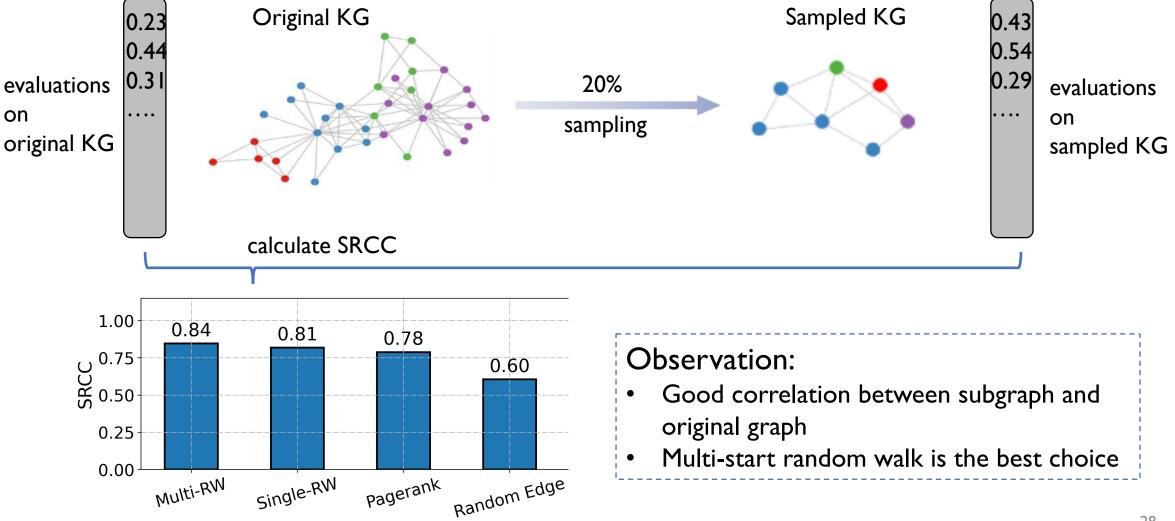
- Background
- A comprehensive understanding of HP in KGE
 - search space
 - validation curvature
 - evaluation cost
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

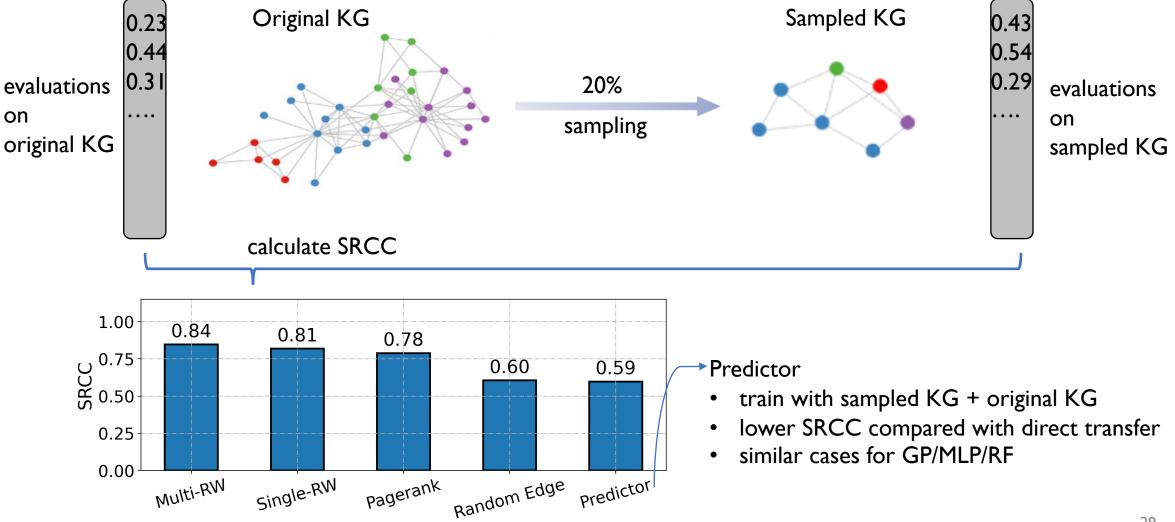

Excavating properties of HPs | Time cost

Three major aspects for efficiency in Def. I 1. the size of search space χ 2. the validation curvature of \mathcal{M} 3. the evaluation cost in solving $argmin_{\mathcal{P}}$

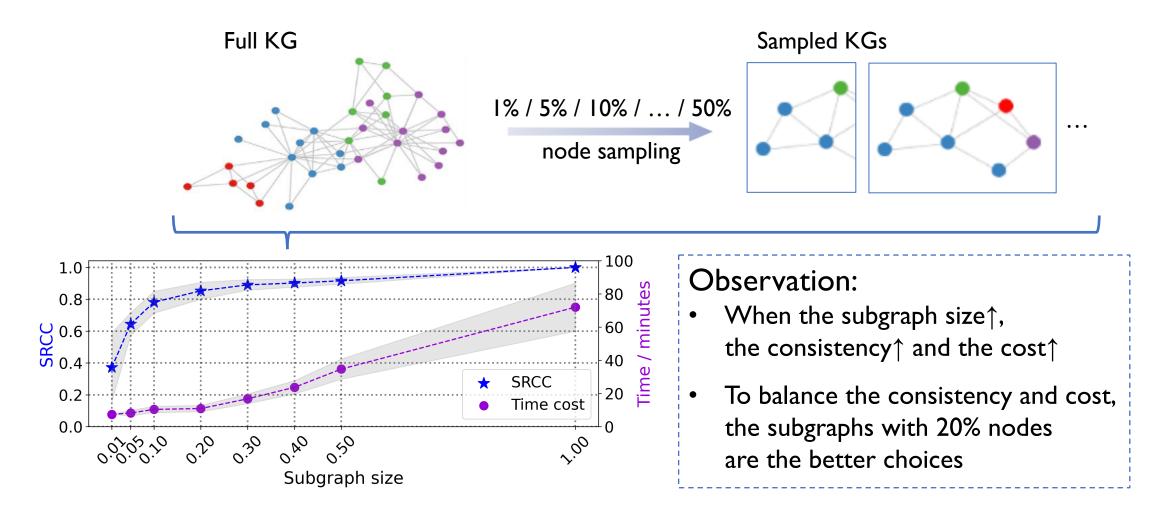
dataset	#entity	#relation	#train	#validate	#test	Average evaluation time cost:
WN18RR (Dettmers et al., 2017)	41k	11	87k	3k	3k	~2.1h
FB15k-237 (Toutanova and Chen, 2015)	15k	237	272k	18k	20k	~3.5h
ogbl-biokg (Hu et al., 2020)	94k	51	4,763k	163k	163k	~I7.3h
ogbl-wikikg2 (Hu et al., 2020)	2,500k	535	16,109k	429k	598k	~21.7h

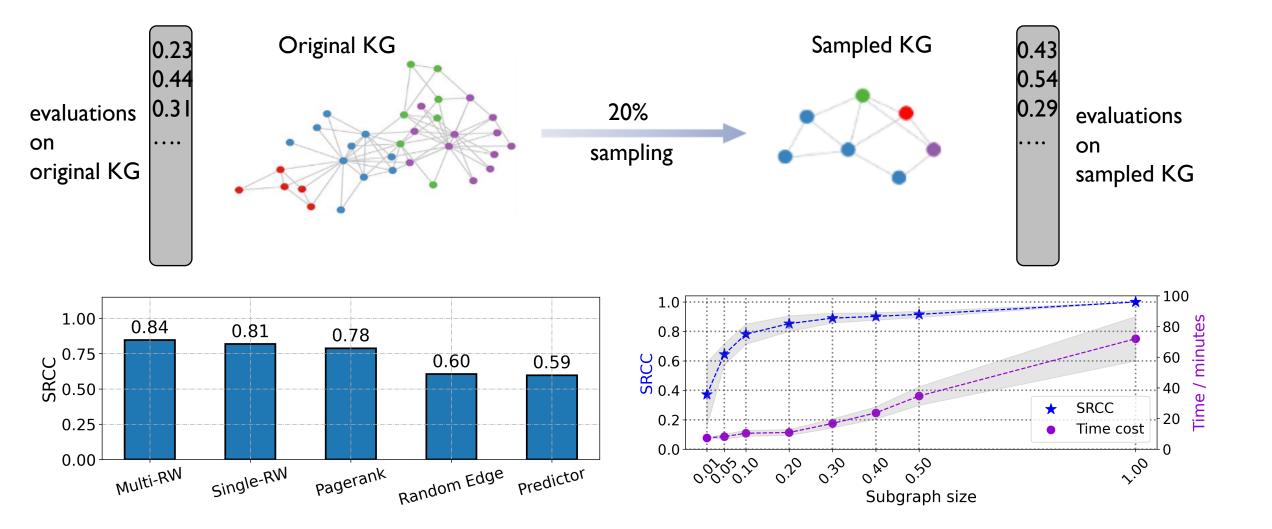
Excavating properties of HPs | Time cost[|]


Three major aspects for efficiency in Def. I I. the size of search space χ 2. the validation curvature of \mathcal{M} 3. the evaluation cost in solving $argmin_{\mathcal{P}}$


I: The experiments are implemented with PyTorch framework,

on a machine with Intel Xeon 6230R CPUs, 754 GB memory and RTX 3090 GPUs with 24 GB.


Excavating properties of HPs | Transferability of subgraphs



Excavating properties of HPs | Transferability of subgraphs

Excavating properties of HPs | Transferability of subgraphs

Summary of the observations

- Ranking distribution/consistency for each HP's values
 - dimension/batch size
- Full HP range can be shrunken and decoupled
- The validation curvature is pretty complex
- RF is better than GP/MLP as the predictor
- Sampling with multi-start random walk can reduce cost while possessing high performance consistency

Three major aspects for efficiency in Def. I 1. the size of search space χ 2. the validation curvature of \mathcal{M} 3. the evaluation cost in solving $argmin_{\mathcal{P}}$

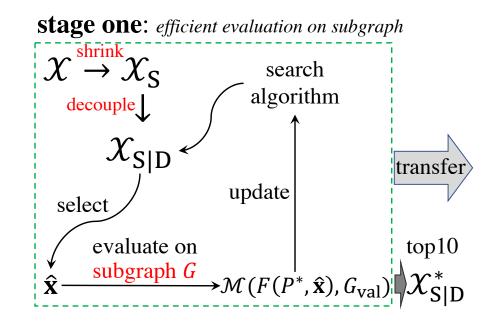
$$\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} \mathcal{M}(F(\mathbf{P}^*, \mathbf{x}), D_{val}),$$
$$\mathbf{P}^* = \arg \min_{\mathbf{P}} \mathcal{L}(F(\mathbf{P}, \mathbf{x}), D_{tra}).$$

How to design algorithm based on the above observations? 🤔

Outline

- Background
- A comprehensive understanding of HP in KGE
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

Reducing the search space


name	ranges in the whole space	revised ranges	
optimizer	{Adam, Adagrad, SGD}	Adam	
learning rate	$[10^{-5}, 10^0]$	$[10^{-4}, 10^{-1}]$	shrunken range HPs:
reg. weight	$[10^{-12}, 10^2]$	$[10^{-8}, 10^{-2}]$	can be searched more exactly
dropout rate	[0, 0.5]	[0, 0.3]	can be searched more exactly
inverse relation	{True, False}	{False}	
batch size	{128, 256, 512, 1024}	128	decoupled HPs:
	{100, 200, 500, 1000, 2000}		can be directly tuned
	[100, 200, 200, 1000, 2000]		apart from other HPs

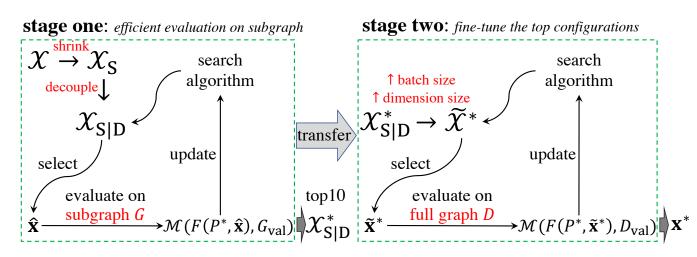
Reduced space = shrinkage range HPs + decoupled HPs The reduced space is about **700 times smaller** than the full space

TwO-Stage Search algorithm (KGTuner)

Stage I: exploration on reduced space

- quickly search HP on sampled KG
- with predictor RF and acquisition BORE

Alg	gorithm 1 KGTuner: two-stage search algorithm
	quire: KG embedding model F , dataset D , and budget B ; shrink the search space \mathcal{X} to \mathcal{X}_{S} and decouple \mathcal{X}_{S} to \mathcal{X}_{SID} ;
	# state one : efficient evaluation on subgraph
2:	sample a subgraph (with 20% entities) G from D_{tra} by
	multi-start random walk;
3:	repeat
4:	sample a configuration $\hat{\mathbf{x}}$ from $\mathcal{X}_{S D}$ by RF+BORE;
5:	evaluate $\hat{\mathbf{x}}$ on the subgraph G to get the performance;
6:	update the RF with record $(\hat{\mathbf{x}}, \mathcal{M}(F(P^*, \hat{\mathbf{x}}), G_{val}));$
7:	until $B/2$ budget exhausted;
8:	save the <i>top10</i> configurations in \mathcal{X}^*_{SID} ;
	# state two : fine-tune the top configurations
9:	increase the batch/dimension size in \mathcal{X}_{SID}^* to get $\tilde{\mathcal{X}}^*$;
10:	set $y^* = 0$ and re-initialize the RF surrogate;
11:	repeat
12:	select a configuration $\tilde{\mathbf{x}}^*$ from $\tilde{\mathcal{X}}^*$ by RF+BORE;
13:	
	update the RF with record $(\tilde{\mathbf{x}}^*, \mathcal{M}(F(P^*, \tilde{\mathbf{x}}^*), D_{\text{val}}));$
15:	
	$y^* \leftarrow \mathcal{M}(F(P^*, \tilde{\mathbf{x}}^*), D_{\text{val}}) \text{ and } \mathbf{x}^* \leftarrow \tilde{\mathbf{x}}^*; \text{ end if}$
	until the remaining $B/2$ budget exhausted;
17:	return x [*] .
-	


Algorithm 1 KGTuner: two-stage search algorithm TwO-Stage Search algorithm (KGTuner) **Require:** KG embedding model F, dataset D, and budget B; 1: shrink the search space \mathcal{X} to \mathcal{X}_{S} and decouple \mathcal{X}_{S} to \mathcal{X}_{SID} ; **# state one**: efficient evaluation on subgraph **Stage2:** exploitation with fine-tuning 2: sample a subgraph (with 20% entities) G from D_{tra} by transfer top 10 configurations from stage 1 multi-start random walk; 3: repeat finetune configuration on original KG sample a configuration $\hat{\mathbf{x}}$ from $\mathcal{X}_{S|D}$ by RF+BORE; 4: with higher dimension and batchsize 5: evaluate $\hat{\mathbf{x}}$ on the subgraph G to get the performance; update the RF with record $(\hat{\mathbf{x}}, \mathcal{M}(F(P^*, \hat{\mathbf{x}}), G_{\text{val}}));$ 6: 7: **until** B/2 budget exhausted; stage two: fine-tune the top configurations 8: save the *top10* configurations in \mathcal{X}_{SID}^* ; **# state two**: fine-tune the top configurations search 9: increase the batch/dimension size in \mathcal{X}_{SID}^* to get $\tilde{\mathcal{X}}^*$; algorithm ↑ batch size 10: set $y^* = 0$ and re-initialize the RF surrogate; ↑ dimension size 11: repeat select a configuration $\tilde{\mathbf{x}}^*$ from \mathcal{X}^* by RF+BORE; 12: transfe evaluate on full graph G to get the performance; 13: update update the RF with record $(\tilde{\mathbf{x}}^*, \mathcal{M}(F(P^*, \tilde{\mathbf{x}}^*), D_{\text{val}}));$ 14: select if $\mathcal{M}(F(P^*, \tilde{\mathbf{x}}^*), D_{\text{val}}) > y^*$ then 15: $y^* \leftarrow \mathcal{M}(F(P^*, \tilde{\mathbf{x}}^*), D_{\text{val}}) \text{ and } \mathbf{x}^* \leftarrow \tilde{\mathbf{x}}^*; \text{ end if }$ evaluate on top10 16: **until** the remaining B/2 budget exhausted; full graph D $\rightarrow \mathcal{M}(F(P^{\star}, \tilde{\mathbf{x}}^{\star}), D_{\text{val}})$ 17: return \mathbf{x}^* .

Stage I: exploration on reduced space

- quickly search HP on sampled KG
- with predictor RF and acquisition BORE

Stage2: exploitation with fine-tuning

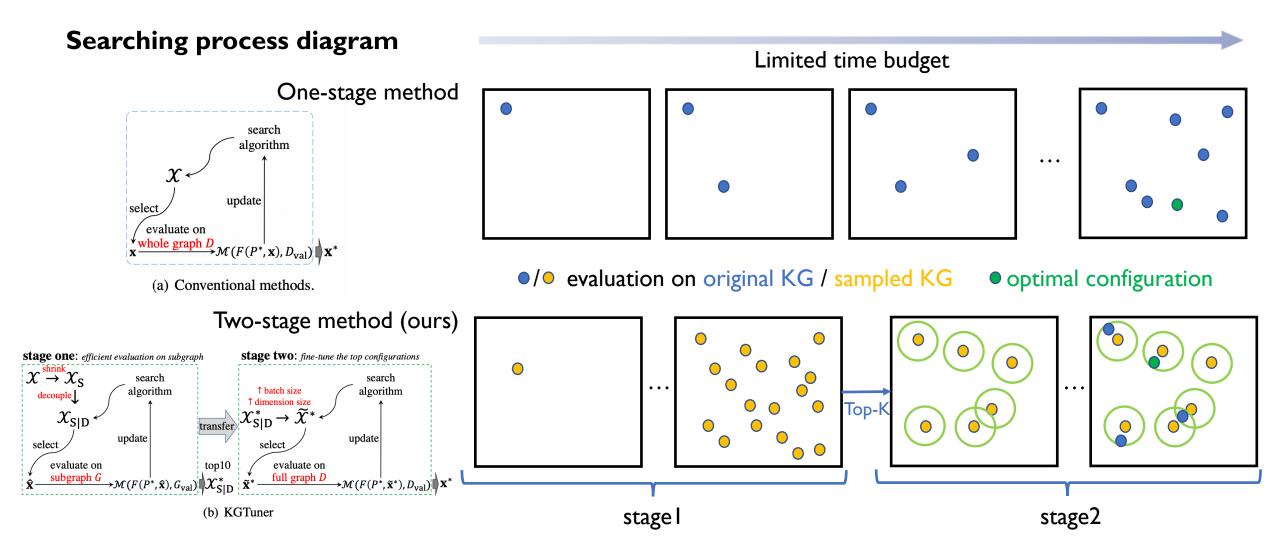
- transfer top I0 configurations from stage I
- finetune configuration on original KG

Algorithm 1 KGTuner: two-stage search algorithm

Reg	uire:	KG	embe	dding	mode	l F,	datas	et D ,	and b	oudge	et B ;
1:	shrink	the	search	n space	e \mathcal{X} to	\mathcal{X}_{S}	and d	lecou	ple ${\mathcal X}$	s to 2	$\mathcal{X}_{S D};$
	# stat	e on	e: effic	cient e	evalua	tion	on si	ibgra	ph		

2: sample a subgraph (with 20% entities) G from D_{tra} by multi-start random walk;

3: repeat


- 4: sample a configuration $\hat{\mathbf{x}}$ from $\mathcal{X}_{S|D}$ by RF+BORE;
- 5: evaluate $\hat{\mathbf{x}}$ on the subgraph G to get the performance;
- 6: update the RF with record $(\hat{\mathbf{x}}, \mathcal{M}(F(P^*, \hat{\mathbf{x}}), G_{\text{val}}));$
- 7: **until** B/2 budget exhausted;
- 8: save the *top10* configurations in \mathcal{X}_{SID}^* ;

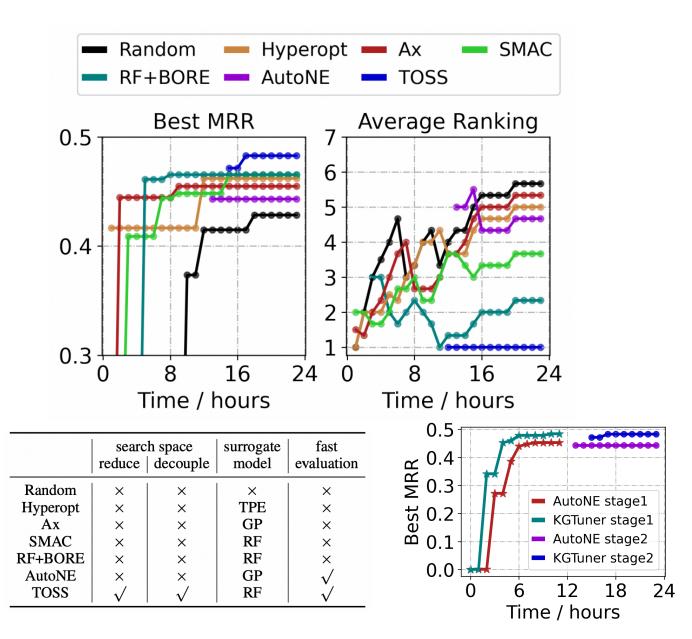
state two: fine-tune the top configurations

- 9: increase the batch/dimension size in \mathcal{X}_{SID}^* to get $\tilde{\mathcal{X}}^*$;
- 10: set $y^* = 0$ and re-initialize the RF surrogate;

11: repeat

- 12: select a configuration $\tilde{\mathbf{x}}^*$ from $\tilde{\mathcal{X}}^*$ by RF+BORE;
- 13: evaluate on full graph G to get the performance;
- 14: update the RF with record $(\tilde{\mathbf{x}}^*, \mathcal{M}(F(P^*, \tilde{\mathbf{x}}^*), D_{\text{val}}));$
- 15: if M(F(P*, x̃*), D_{val}) > y* then y* ← M(F(P*, x̃*), D_{val}) and x* ← x̃*; end if
 16: until the remaining B/2 budget exhausted;
 17: return x*.

Outline

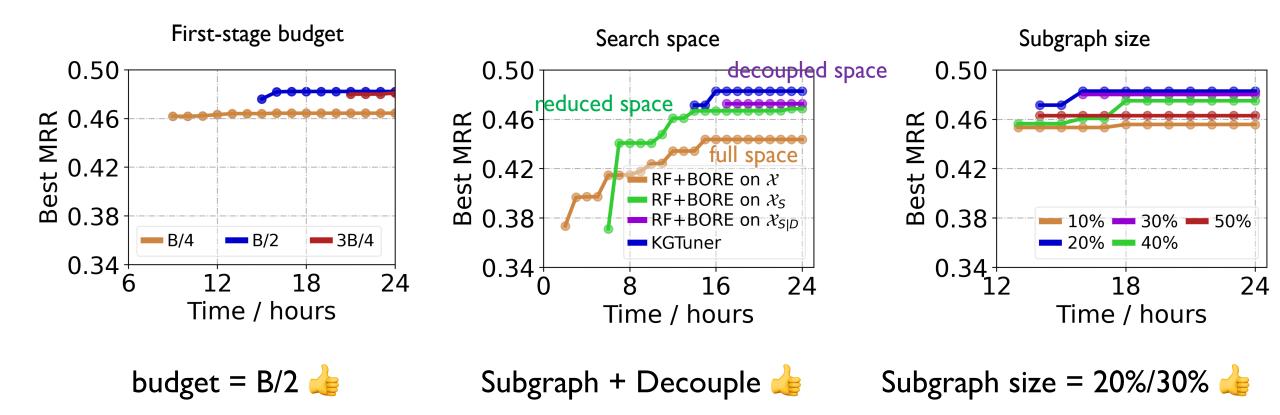

- Background
- A comprehensive understanding of HP in KGE
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

Experiment

Search algorithm comparison

Observations

- Random search is the worst due to the full randomness.
- SMAC and RF+BORE achieve better performance than Hyperopt and Ax since RF can fit the space better than TPE and GP.
- Due to the weak approximation and transferability, AutoNE also performs bad.
- KGTuner is much better than all the baselines



Experiment

Soar	schod co	nfiguration n	orformanco										
Jear	cheu co	nfiguration p			WN18RR				FB15k-237				
						MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10
					ComplEx	0.440	0.410	0.460	0.510	0.247	0.158	0.275	0.428
models		ogbl-biokg	ogbl-wikikg2		DistMult	0.430	0.390	0.440	0.490	0.241	0.155	0.263	0.419
		0		Original	RESCAL	0.420	-	-	0.447	0.270	-	-	0.427
TransE 0.7452 0.4256 ConvE 0.430 0.400 0.440 RotatE 0.7989 0.2530 TransE 0.226 -	TransE	0.7452	0.4256	Ongina			0.400	0.440	0.520	0.325	0.237	0.356	0.501
		0.501	0.294	-	-	0.465							
original	DistMult	0.8043	0.3729		RotatE	0.476	0.428	<u>0.492</u>	<u>0.571</u>	0.338	<u>0.241</u>	0.375	0.533
original					TuckER	0.470	0.443	<u>0.482</u>	<u>0.526</u>	0.358	0.266	0.394	0.544
	ComplEx	0.8095	0.4027		ComplEx	0.475	<u>0.438</u>	<u>0.490</u>	<u>0.547</u>	<u>0.348</u>	<u>0.253</u>	<u>0.384</u>	0.536
	AutoSF	0.8320	0.5186		DistMult	<u>0.452</u>	0.413	<u>0.466</u>	<u>0.530</u>	<u>0.343</u>	0.250	0.378	0.531
		07701 (4 410/4)	0.4739 (11.34%†)	LibKGE	RESCAL	0.467	0.439	0.480	0.517	<u>0.356</u>	0.263	0.393	0.541
	TransE			(Ruffinelli et al., 2019)	ConvE	0.442	0.411	0.451	<u>0.504</u>	0.339	0.248	0.369	<u>0.521</u>
	RotatE	0.8013 (0.30%)	0.2944 (16.36%†)		TransE	0.228	0.053	<u>0.368</u>	<u>0.520</u>	<u>0.313</u>	<u>0.221</u>	<u>0.347</u>	<u>0.497</u>
KGTuner	DistMult	0.8241 (2.46%)	0.4837 (29.71%†)		ComplEx	0.484	0.440	0.506	0.562	0.352	0.263	0.387	0.530
	ComplEx	0.8385 (3.58%)	0.4942 (22.72%)		DistMult	0.453	0.407	0.468	0.548	0.345	0.254	0.377	0.527
	AutoSF	0.8354 (0.41%)	0.5222 (0.69%)	KGTuner (ours)	RESCAL	0.479	<u>0.436</u>	0.496	0.557	0.357	0.268	<u>0.390</u>	<u>0.535</u>
				Refuner (ours)	ConvE	<u>0.437</u>	<u>0.399</u>	<u>0.449</u>	0.515	<u>0.335</u>	0.242	<u>0.368</u>	0.523
average in	nprovement	2.23% 16.16%			TransE	0.233	<u>0.032</u>	0.399	0.542	0.327	0.228	0.369	0.522
	Γ				RotatE	0.480	0.427	0.501	0.582	0.338	0.243	<u>0.373</u>	0.527
					TuckER	0.480	<u>0.437</u>	0.500	0.557	<u>0.347</u>	0.255	<u>0.382</u>	<u>0.534</u>

41

Experiment | Ablation study

Experiment

Searched optimal configurations

Table 9: Searched optimal hyperparameters for the WN18RR dataset.

HP/Model	ComplEx	DistMult	RESCAL	ConvE	TransE	RotatE	TuckER	
# negative samples	512	128	128	1VsAll	128	2048	128	
loss function	BCE_adv	BCE_adv	BCE_mean	BCE_sum	CE	BCE_adv	CE	
gamma	0.00	0.00	0.00	0.00	6.00	3.10	0.00	
adv. weight	0.57	1.41	0.00	0.00	0.00	1.93	0.00	
regularizer	DURA	NUC	DURA	FRO	FRO	FRO	DURA	_
reg. weight	$8.64 * 10^{-3}$	$9.58 * 10^{-3}$	$1.76 * 10^{-3}$	$1.00 * 10^{-4}$	$1.00 * 10^{-4}$	$6.51 * 10^{-6}$	$1.42 * 10^{-3}$	ר
dropout rate	0.25	0.29	0.00	0.00	0.20	0.00	0.00	J Limite
optimizer	Adam	- rango						
learning rate	$1.77 * 10^{-3}$	$4.58 * 10^{-3}$	$1.73 * 10^{-3}$	$1.00 * 10^{-3}$	$1.00 * 10^{-3}$	$6.43 * 10^{-4}$	$1.37 * 10^{-3}$	range
initializer	xavier_norm	norm	uniform	uniform	uniform	norm	uniform	
batch size	512	1024	512	1024	512	512	512	ר
dimension size	1000	2000	1000	2000	1000	1000	200	J
inverse relation	False	-						

Monotonously

Table 10: Searched optimal hyperparameters for the FB15k-237 dataset.

HP/Model	ComplEx	DistMult	RESCAL	ConvE	TransE	RotatE	TuckER
# negative samples	512	kVsAll	2048	512	512	2048	2048
loss function gamma adv. weight	BCE_adv 0.00 1.93	CE 0.00 0.00	CE 0.00 0.00	BCE_sum 0.00 0.00	BCE_adv 6.76 1.99	BCE_adv 7.58 1.57	BCE_adv 0.00 1.94
regularizer reg. weight dropout rate	DURA $9.75 * 10^{-3}$ 0.22	FRO $1.00 * 10^{-4}$ 0.30	DURA $9.01 * 10^{-3}$ 0.00	DURA $6.42 * 10^{-3}$ 0.08	FRO $2.16 * 10^{-3}$ 0.03	DURA $5.12 * 10^{-3}$ 0.02	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
optimizer	Adam	Adam	Adam	Adam	Adam	Adam	Adam
learning rate initializer	9.70 * 10 ⁻⁴ uniform	$1.00 * 10^{-3}$ normal	1.19 * 10 ⁻³ xavier_norm	$2.09 * 10^{-3}$ normal	2.66 * 10 ⁻⁴ xavier_norm	2.98 * 10 ⁻⁴ uniform	3.19 * 10 ⁻⁴ normal
batch size dimension size	1024 2000	1024 2000	512 500	1024 500	512 1000	512 1000	512 500
inverse relation	False	False	False	False	False	False	False

Reduced

options

Outline

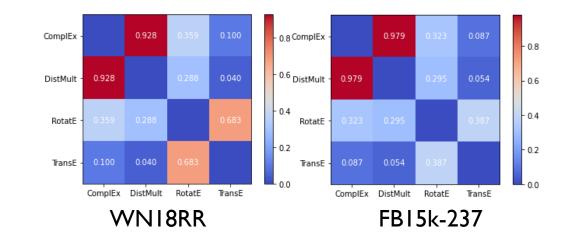
- Background
- A comprehensive understanding of HP in KGE
- An efficient two-stage HP search algorithm
- Experiments
- Key takeaway and future directions

Key takeaways

Recall the difficultiesKGTunerLacking understanding of KGE
componentsA comprehensive understanding of HPsLow efficiency in searching for
hyperparameterAn efficient two-stage HP search algorithm

Code: <u>https://github.com/AutoML-Research/KGTuner</u>

Email: zhangyongqi@4paradigm.com


Limitation and future directions

Limitation

- Limited to pure embedding models
- Not considering HPs inside the SF model
- Lacking of theoretical analysis and guarantees

Potential directions

- apply with GNN to solve the scaling problem
- combine HPO with NAS
- transferability across datasets/models/tasks

