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Knowledge Graph Reasoning
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• Three classes of existing works
• triple-based

• (head, relation, tail)

• path-based
•

• graph-based

Data structure for KG Reasoning
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𝑝 𝑒!, 𝑟!, 𝑒" → [0,1]

Encoding the corresponding data structure, and
mapping the representation into the probability
of query triplets 𝑒! , 𝑟! , 𝑒" .

The focus!



• Graph-based method for KG reasoning

• propagate the message with the graph structure

• update entity representation at each propagation step

Graph neural network

Graph / Subgraph

forward
inference

GNN for KG Reasoning
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3 kinds of models

Full propagation

Progressive propagationConstrained propagation
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Problem formulation

• Query -dependent propagation path

• Problems when 𝐿 is large
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' as the sets of involved entities in each propagation step for query 𝑒!, 𝑟!, ?
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• large memory cost
• over-smoothing

• extremely high
inference cost

• exponentially
increased nodes



Challenges

• Reduce the size of propagation path through sampling

• Two challenges of the sampling strategy 𝑆 ⋅
• the target answer 𝑒" is unknown given 𝑒!, 𝑟!, ?
• semantic dependency is complex

• Existing sampling approaches are not applicable

connection lost

bad sampling signal

(i) no target preserving; (ii) no relation consideration; (iii) no direct supervision



The proposed method

1. connection lostChallenges 2. bad sampling signal

Proposed connection-preserving
incremental sampling

learning-based sematic
aware distribution

Key idea

adaptively sample semantically relevant entities during propagation

preserve the previous entities
& sample from the newly visited ones

introduce a parameterized distribution
& borrow knowledge from the GNN



Incremental sampling
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/ / entities covered in the 0/1/2-th steps

Candidate generation:
the newly-visit neighboring entities of last step

①③④⑤⑥ when 𝑙 = 1e.g.
①③④⑦⑧ when 𝑙 = 2

⑤⑥ when 𝑙 = 1e.g.
④⑦ when 𝑙 = 2

Candidate sampling:
sample 𝐾 entities with replacement from candidates

Linear complexity!



Semantic-aware distribution

• Parameterized sampling distribution:
• Sharing the knowledge in GNN representations 𝒉,ℓ

• Adaptive based on the learnable parameters 𝜽ℓ

• Learning strategy:
• Gumbel-trick to enable backward propagation on hard samples.

• Sampling: get top-K based on gumbel-logits
𝐺# ≔ 𝑔 𝒉#ℓ ; 𝜽ℓ − log − log𝑈# with 𝑈# ∼ Uniform(0,1) for the candidate entities

• Enable backpropagation: straight-through estimation
𝒉#ℓ = 1 − no_grad 𝑝ℓ(𝑒) + 𝑝ℓ(𝑒) ⋅ 𝒉#ℓ for the selected entities

Has no influence during forward propagation,
but provides gradient for 𝜃^ℓ when backward.



Overall comparison
Full propagation

Progressive propagation

Constrained propagation

AdaProp

Achieves smaller complexity, deeper steps and query-dependent.
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Experiments | Quantitative Results

Evaluation with inductive settings

Evaluation with transductive settings

AdaProp achieves the 
state-of-the-art 

performance 
in both

transductive and inductive 
KG reasoning settings.



Experiments | Quantitative Results

The incremental sampling is better 
than the other sampling strategies.

The performance gains by sampling more entities 
would gradually become marginal or even worse.



Experiments | Qualitative Results



Experiments | Qualitative Results

Heatmaps of relation type ratios in the propagation path Exemplar propagation paths on FB15k237-v1 dataset

connection-preservingsemantic-aware
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Summary

Three major contributions：

• We propose an incremental sampling scheme
• only has linear complexity with regard to the propagation steps 
• can preserve the layer-wise connections between sampled entities

• We design a semantic-aware Gumbel top-𝑘 distribution 
• can adaptively select local neighborhoods relevant to the query relation 
• learned by a straight through estimator

• We achieve the state-of-the-art performance 
• in both transductive and inductive KG reasoning settings
• case study shows that the learned sampler is query-dependent and semantic-aware
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