Question: Is all the information necessary for reasoning on knowledge graphs? 🤪

Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs

Zhanke Zhou, Yongqi Zhang, Jiangchao Yao, Quanming Yao, Bo Han

semantic models (computation-efficient but parameter-expensive) • p(u, q, v) is measured by a scoring function with representations h_u, h_q, h_v structural models (parameter-efficient but computation-expensive) • learn the structures by leveraging the relational paths between u and v• or use the graph structure for reasoning, capturing more complex semantics

- \rightarrow f_{θ} acts on G to obtain \widehat{Y} of all entities
- \rightarrow The whole graph (G), model (f_{θ}), and prediction (\widehat{Y}) are coupled

How to efficiently and effectively conduct subgraph reasoning on KG? 🤤

$$\mathcal{G} \xrightarrow{g_{oldsymbol{\phi}},(u,q)} \mathcal{G}_s \stackrel{f_{oldsymbol{ heta}}}{\longmapsto} \hat{oldsymbol{Y}},$$

Non-parametric indicator: $\boldsymbol{p}^{(k+1)} \leftarrow \alpha \cdot \boldsymbol{s} + (1-\alpha) \cdot \boldsymbol{D}^{-1} \boldsymbol{A} \cdot \boldsymbol{p}^{(k)}$,

2. extract a subgraph with top entities and edges

Entity Sampling:
$$\mathcal{V}_s \leftarrow extsf{TopK} \Big(\mathcal{V}, \ oldsymbol{p}, \ K \!=\! r^q_\mathcal{V} \! imes \! |\mathcal{V}| \Big),$$

Edge Sampling:
$$\mathcal{E}_s \leftarrow \text{TopK}\Big(\mathcal{E}, \{ p_x \cdot p_o : x, o \in \mathcal{V}_s, (x, r, o) \in \mathcal{E} \}, K = r_{\mathcal{E}}^q \times |\mathcal{E}| \Big).$$

3. inference on the subgraph and get the final prediction Indicating: $\boldsymbol{h}_{o}^{0} \leftarrow \mathbb{1}(o=u),$

 $\texttt{Propagation:} \ \boldsymbol{h}_o^{l+1} \leftarrow \texttt{DROPOUT}\Big(\texttt{ACT}\Big(\texttt{AGG}\big\{\texttt{MESS}(\boldsymbol{h}_x^l, \boldsymbol{h}_r^l, \boldsymbol{h}_o^l) : (x, r, o) \in \mathcal{E}_s\big\}\Big)\Big)$

港浸會大學 HONG KONG BAPTIST UNIVERSITY

THE HONG KONG UNIVERSITY OF SCIENCE AND

Paper

Slides

Experiments

Table 1: Empirical results of WN18RR, NELL-995, YAGO3-10 datasets. Best performance is indicated by the **bold face** numbers, and the <u>underline</u> means the second best. "-" means unavailable results. "H@1" and "H@10" are short for Hit@1 and Hit@10 (in percentage), respectively.

tr.m.o.	models	WN18RR			NELL-995			YAGO3-10		
type		MRR↑	H@1↑	H@10↑	MRR↑	H@1↑	H@10↑	MRR↑	H@1↑	H@10↑
Semantic Models	ConvE	0.427	39.2	49.8	0.511	44.6	61.9	0.520	45.0	66.0
	QuatE	0.480	44.0	55.1	0.533	46.6	64.3	0.379	30.1	53.4
	RotatE	0.477	42.8	57.1	0.508	44.8	60.8	0.495	40.2	67.0
Structural Models	MINERVA	0.448	41.3	51.3	0.513	41.3	63.7	_	_	_
	DRUM	0.486	42.5	58.6	0.532	46.0	66.2	0.531	45.3	67.6
	RNNLogic	0.483	44.6	55.8	0.416	36.3	47.8	0.554	50.9	62.2
	CompGČN	0.479	44.3	54.6	0.463	38.3	59.6	0.489	39.5	58.2
	DPMPN	0.482	44.4	55.8	0.513	45.2	61.5	0.553	48.4	67.9
	NBFNet	0.551	49.7	66.6	0.525	45.1	63.9	0.550	47.9	68.3
	RED-GNN	0.533	48.5	<u>62.4</u>	<u>0.543</u>	<u>47.6</u>	<u>65.1</u>	0.559	48.3	<u>68.9</u>
	one-shot-subgraph	0.567	51.4	66.6	0.547	48.5	<u>65.1</u>	0.606	54.0	72.1

Table 2: Empirical results of two OGB datasets (Hu et al., 2020) with regard to official leaderboards.

type	models	OGBL-BIOKG Test MRR↑ Valid MRR↑ #Params↓			OGBL-WIKIKG2 Test MRR↑ Valid MRR↑ #Params↓				
Semantic Models	TripleRE AutoSF PairRE ComplEx DistMult RotatE TransE	$\begin{array}{c} 0.8348\\ 0.8309\\ 0.8164\\ 0.8095\\ 0.8043\\ 0.7989\\ 0.7452\end{array}$	$\begin{array}{c} 0.8360\\ 0.8317\\ 0.8172\\ 0.8105\\ 0.8055\\ 0.7997\\ 0.7456\end{array}$	469,630,002 93,824,000 187,750,000 187,648,000 187,648,000 187,597,000 187,648,000	$\begin{array}{c} 0.5794 \\ 0.5458 \\ 0.5208 \\ 0.4027 \\ 0.3729 \\ 0.4332 \\ 0.4256 \end{array}$	$\begin{array}{c} 0.6045\\ 0.5510\\ 0.5423\\ 0.3759\\ 0.3506\\ 0.4353\\ 0.4272\end{array}$	$\begin{array}{c} 500,763,337\\ 500,227,800\\ 500,334,800\\ 1,250,569,500\\ 1,250,569,500\\ 1,250,435,750\\ 1,250,569,500\end{array}$		
Structural Models	one-shot-subgraph	0.8430	0.8435	976,801	0.6755	0.7080	6,831,201		

10% entities

Table 3: Coverage Ratio of different heuristics. Bold face numbers indicate the best results in column.

houristics	WN18RR				NELL-99	5	YAGO3-10		
	$ r_{\mathcal{V}}^q=0.1$	$r_{\mathcal{V}}^q = 0.2$	$r_{\mathcal{V}}^q = 0.5$	$ r_{\mathcal{V}}^q=0.1$	$r_{\mathcal{V}}^q \!=\! 0.2$	$r_{\mathcal{V}}^q \!=\! 0.5$	$ r_{\mathcal{V}}^q = 0.1$	$r_{\mathcal{V}}^q \!=\! 0.2$	$r_{\mathcal{V}}^q \!=\! 0.5$
Random Sampling (RAND)	0.100	0.200	0.500	0.100	0.200	0.500	0.100	0.200	0.500
PageRank (PR)	0.278	0.407	0.633	0.405	0.454	0.603	0.340	0.432	0.694
Random Walk (RW)	0.315	0.447	0.694	0.522	0.552	0.710	0.449	0.510	0.681
Breadth-first-searching (BFS)	0.818	0.858	0.898	0.872	0.935	0.982	0.728	0.760	0.848
Personalized PageRank (PPR)	0.876	0.896	0.929	0.965	0.977	0.987	0.943	0.957	0.973

Figure 5: Exemplar subgraphs sampled from WN18RR (left) and YAGO3-10 (right). The red and green nodes indicate the query entity and answer entity. The colors of the edges indicate relation types. The bottom distributions of degree and distance show the statistical properties of each subgraph.