Question: Can we model long-range interactions with a single jump in molecular graphs? 🦃

Neural Atoms: Propagating Long-Range Interaction ICLR In Molecular Graphs through Efficient Communication Channel

Xuan Li*, Zhanke Zhou*, Jiangchao Yao, Yu Rong, Lu Zhang, Bo Han

Background: Long-range Interactions

Molecular graphs consist of different ○ H types of atom interaction with different properties and functions.

- The short-range interaction (SRI) forms the structure of the molecular graph.

- The long-range interaction (LRI) could determine physical and chemical properties.

🛑 O 💿 N 💿 C

🔘 SRI 🔍- - - - 🔍 LRI

Limitations of existing approaches

Graph Neural Network

Stacking multiple GNN layers to capture LRI?

- Over-smoothing: representations become indistinguishable;
- Over-squashing: overwhelming information be squashed.

Graph Transformer

Using a fully connected graph to capture LRI?

- Irrelevant interactions: the LRIs are naturally sparse;
- Additional computation: unnecessary node-pair attentions.

Motivation

Modeling distant interactions with a single jump in molecular graphs in **another space**.

Advantages

- Learnable projection from atoms to neural atoms:
- **Reducing** the multi-hop long-range interaction to single-hop;
- GNN-agnostic and plug-in-and-play.

Neural Atoms

Definition 1. Neural atoms encompass a collection of virtual, parameterized atoms that symbolize a cluster of atoms within a designated molecular graph. The process entails the acquisition of knowledge that enables the transformation of conventional atoms into neural atoms, along with their interactions. This transformation can be technically executed with model-agnostic methodologies.

Learning to project all the original atoms into a few neural atoms that abstract the collective information of atomic groups in a molecule.

Step-1. Project atom representations $H^{(\ell)}_{GNN}$ to neural atom representations $H_{NA}^{(\ell)}$.

 $\boldsymbol{H}_{NA}^{(\ell)} = \text{LayerNorm}\left(\boldsymbol{Q}_{NA}^{(\ell)} \oplus \text{MultiHead}(\boldsymbol{Q}_{NA}^{(\ell)}, \boldsymbol{H}_{\text{GNN}}^{(\ell)}, \boldsymbol{H}_{\text{GNN}}^{(\ell)})\right)$

Step-2. Exchange information among neural atoms $H_{NA}^{(\ell)} \mapsto \tilde{H}_{NA}^{(\ell)}$.

 $\tilde{\boldsymbol{H}}_{NA}^{(\ell)} = \text{LayerNorm}\left(\boldsymbol{H}_{NA}^{(\ell)} \oplus \text{MultiHead}(\boldsymbol{H}_{NA}^{(\ell)}, \boldsymbol{H}_{NA}^{(\ell)}, \boldsymbol{H}_{NA}^{(\ell)})\right)$

Step-3. Project neural atoms back and enhance the atoms' representation $(H_{GNN'}^{(\ell)} \tilde{H}_{NA}^{(\ell)}) \mapsto H^{(\ell)}$.

$$\boldsymbol{H}^{(\ell)} = \boldsymbol{H}_{\text{GNN}}^{(\ell)} \oplus \tilde{\boldsymbol{A}}_{\text{NA}}^{(\ell)} \tilde{\boldsymbol{H}}_{\text{NA}}^{(\ell)}, \text{ s.t. } \tilde{\boldsymbol{A}}_{\text{NA}}^{(\ell)} = \text{Aggregate} \left(\{ \hat{\boldsymbol{A}}_m \}_{m=1}^M \right)^\top \in \mathbb{R}^{N \times K}$$

Empirical Study

 \rightarrow Neural atoms can **boost** the performance of various GNNs up to 27.32%.

Model	Peptides-func	Peptides-struct	PCQM-Cont
	AP↑	$MAE \downarrow$	MRR ↑
Transformer+LapPE	0.6326 ± 0.0126	0.2529 ± 0.0016	0.3174 ± 0.00
SAN+LapPE	0.6384 ± 0.0121	0.2683 ± 0.0043	0.3350 ± 0.00
GraphGPS	0.6535 ± 0.0041	0.2500 ± 0.0005	0.3337 ± 0.00
GCN	0.5930 ± 0.0023	0.3496 ± 0.0013	0.2329 ± 0.00
+ Neural Atoms	0.6220 ± 0.0046	0.2606 ± 0.0027	0.2534 ± 0.02
GINE	0.5498 ± 0.0079	0.3547 ± 0.0045	0.3180 ± 0.00
+ Neural Atoms	0.6154 ± 0.0157	0.2553 ± 0.0005	0.3126 ± 0.00
GCNII	0.5543 ± 0.0078	0.3471 ± 0.0010	0.3161 ± 0.00
+ Neural Atoms	0.5996 ± 0.0033	0.2563 ± 0.0020	0.3049 ± 0.00
GatedGCN	0.5864 ± 0.0077	0.3420 ± 0.0013	0.3218 ± 0.00
+ Neural Atoms	0.6562 ± 0.0075	0.2585 ± 0.0017	0.3258 ± 0.00
GatedGCN+RWSE	0.6069 ± 0.0035	0.3357 ± 0.0006	0.3242 ± 0.00
+ Neural Atoms	0.6591 ± 0.0050	0.2568 ± 0.0005	0.3262 ± 0.00

 \rightarrow Neural atoms without 3D information and half the #params. achieve competitiveness or outperform the Ewald-based approach (previous SOTA). 14E 110E

Table 2: Validation energy MAE and MSE comparison on OE62 dataset.						
	Energy MAE \downarrow	Energy MSE \downarrow	Number of Params.			
SchNet (Schütt et al., 2017)	0.1351	0.0658	2.75 M			
+ Ewald Block	0.0811	0.0301	12.21 M			
+ Neural Atoms	0.0834	0.0309	2.63 M			
PaiNN (Schütt et al., 2021)	0.6049	0.0133	12.52 M			
+ Ewald Block	0.0590	0.0134	15.68 M			
+ Neural Atoms	0.0558	0.0122	6.05 M			
DimeNet++ (Gasteiger et al., 2020)	0.0501	0.0117	2.76 M			
+ Ewald Block	0.0479	0.0107	4.75 M			
+ Neural Atoms	0.0551	0.0129	1.97 M			

\rightarrow Neural Atoms are **better** than multiple fully connected Virtual Nodes.

Table 14: Performance for virtual nodes (VNs) and neural atoms (NAs) in Peptide-Func, evaluated by

Model	Method	#VNs /#NAs = 5	#VNs /#NAs = 15	#VNs /#NAs = 75	#VNs /#NAs = 135	
GCN	VNs NAs	0.5566 0.5962	0.5543 0.5859	0.5568 0.5903	0.5588 0.6220	
GINE	VNs NAs	0.5437 0.6107	0.5500 0.6128	0.5426 0.6147	0.5426 0.6154	
GCNII	VNs NAs	0.5086 0.6061	0.5106 0.5862	0.5077 0.5909	0.5083 0.5996	
GatedGCN	VNs NAs	0.5810 0.6660	0.5868 0.6533	0.5761 0.6562	0.5810 0.6562	

 \rightarrow Neural Atoms have sparse attention and establish inter-communications.

