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Motivation: the reasoning behavior of LLMs remains poorly understood
* Reading texts (reasoning outputs) is tedious and time-consuming
* Analysis with visualization plots is more easy and intuitive ¥
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Key: Project each state from texts to numerical feature s; (distances to the k choices of this question)

1
s; = [d(si, ¢1),d(si, €2), .., d(s;, c)]T, where d(s;, cj) = pLLM(Cj‘Si) “j' (the perplexity of decoding choice ¢; given state s;)
then, we obtain the feature matrix including all states and choices, and project it to 2-dimensional space via -SNE
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