

Problem: Link Prediction with Noise

The link prediction task:

- based on the **observed** links
- to predict the **latent** links

The Bilateral Edge Noise

Existing graph benchmarks are generally **clean**.

However, graph data can be **noisy** in practical scenarios:

- the observed graph is often with noisy edges (input noise)
- the **predictive** graph often contains noisy labels (label noise)
- these two kinds of noise can exist at the same time (by random split)

Definition 3.1 (Bilateral edge noise). Given a clean training data, i.e., observed graph $\mathcal{G} = (A, X)$ and labels $Y \in \{0, 1\}$ of query edges, the noisy adjacence \tilde{A} is generated by directly adding edge noise to the original adjacent matrix A while keeping the node features X unchanged. The noisy labels \tilde{Y} are similarly generated by adding edge noise to the labels Y. Specifically, given a noise ratio ε_a , the noisy edges A' ($\tilde{A} = A + A'$) are generated by flipping the zero element in A as one with the probability ε_a . It satisfies that $A' \odot A = O$ and $\varepsilon_a = |nonzero(\tilde{A})| - |nonzero(A)|/|nonzero(A)|$. Similarly, noisy labels are generated and added to the original labels, where $\varepsilon_y = |nonzero(\tilde{Y})| - |nonzero(Y)|/|nonzero(Y)|$.

The Effects of Bilateral Edge Noise

The noise leads to **performance degradation** and **representation collapse**:

→ How to improve the robustness of GNNs under edge noise? 🤪

Combating Bilateral Edge Noise for Robust Link Prediction

Zhanke Zhou, Jiangchao Yao, Jiaxu Liu, Xiawei Guo, Quanming Yao, Li He, Liang Wang, Bo Zheng, Bo Han

Method: Robust Graph Information Bottleneck

 $\min \text{GIB} \triangleq -I(\boldsymbol{H}; \tilde{Y}), \text{ s.t. } I(\boldsymbol{H}; \tilde{A}) < \gamma,$

→ GIB is vulnerable to label noise for its maximum label supervision

In this work, we further balance the mutual dependence

- among graph topology \tilde{A} , target labels \tilde{Y} , and representation **H**
- build a new learning objective RGIB for robust representation

Definition 4.1 (Robust Graph Information Bottleneck). Based on the above analysis, we propose a new learning objective to balance informative signals regarding H, as illustrated in Fig. 5(a), i.e.,

$$\min \mathbf{RGIB} \triangleq -I(\mathbf{H}; \tilde{Y}), \quad s.t. \ \gamma_H^- < H(\mathbf{H}) < \gamma_H^+, I(\mathbf{H}; \tilde{Y} | \tilde{A}) < \gamma_Y, \ I(\mathbf{H}; \tilde{A} | \tilde{Y}) < \gamma_A.$$
(2)

Specifically, constraints on $H(\mathbf{H})$ encourage a diverse \mathbf{H} to prevent representation collapse $(>\gamma_{H}^{-})$ and also limit its capacity $(<\gamma_{H}^{+})$ to avoid over-fitting. Another two MI terms, $I(\mathbf{H}; \tilde{Y}|\tilde{A})$ and $I(\mathbf{H}; \tilde{A}|\tilde{Y})$, mutually regularize posteriors to mitigate the negative impact of bilateral noise on \mathbf{H} . The complete derivation of RGIB and a further comparison of RGIB and GIB are in Appendix B.2.

Instantiation: RGIB-SSL and RGIB-REP

RGIB-SSL optimizes the representation with **self-supervised learning** to achieve a **tractable approximation** of the MI terms

- integrate a uniformity term and an alignment term with graph augmentation
- adopt the contrastive learning technique and contrast pair of samples

$$\min \text{RGIB-REP} \triangleq -\underbrace{\lambda_s I(\boldsymbol{H}; \boldsymbol{Z}_Y)}_{\text{supervision}} + \underbrace{\lambda_A I(\boldsymbol{Z}_A; \tilde{A})}_{\text{topology constraint}} + \underbrace{\lambda_Y I(\boldsymbol{Z}_Y; \tilde{Y})}_{\text{label constraint}}.$$

RGIB-REP purifies the noisy signals with **reparameterization mechanism**

- latent variables Z_Y and Z_A are clean signals extracted from noisy \tilde{Y} and \tilde{A}
- $I(H; Z_Y)$ measures the supervised signals with selected samples Z_Y
- $I(\mathbf{Z}_A; \tilde{A})$ and $I(\mathbf{Z}_Y; \tilde{Y})$ help to select the clean information from noisy \tilde{A}, \tilde{Y}

Experiments

\rightarrow RGIB performs the best in all six datasets under the bilateral noise:

m oth o d	Cora		Citeseer			Pubmed			Facebook			Chameleon			Squirrel			
method	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8111	.7419	.6970	.7864	.7380	.7085	.8870	.8748	.8641	.9829	.9520	.9438	.9616	.9496	.9274	.9432	.9406	.9386
DropEdge	.8017	.7423	.7303	.7635	.7393	.7094	.8711	.8482	.8354	.9811	.9682	.9473	.9568	.9548	.9407	.9439	.9377	.9365
NeuralSparse	.8190	.7318	.7293	.7765	.7397	.7148	.8908	.8733	.8630	.9825	.9638	.9456	.9599	.9497	.9402	.9494	.9309	.9297
PTDNet	.8047	.7559	.7388	.7795	.7423	.7283	.8872	.8733	.8623	.9725	.9674	.9485	.9607	.9514	.9424	.9485	.9326	.9304
Co-teaching	.8197	.7479	.7030	.7533	.7238	.7131	.8943	.8760	.8638	.9820	.9526	.9480	.9595	.9516	.9483	.9461	.9352	.9374
Peer loss	.8185	.7468	.7018	.7423	.7345	.7104	.8961	.8815	.8566	.9807	.9536	.9430	.9543	.9533	.9267	.9457	.9345	.9286
Jaccard	.8143	.7498	.7024	.7473	.7324	.7107	.8872	.8803	.8512	.9794	.9579	.9428	.9503	.9538	.9344	.9443	.9327	.9244
GIB	.8198	.7485	.7148	.7509	.7388	.7121	.8899	.8729	.8544	.9773	.9608	.9417	.9554	.9561	.9321	.9472	.9329	.9302
SupCon	.8240	.7819	.7490	.7554	.7458	.7299	.8853	.8718	.8525	.9588	.9508	.9297	.9561	.9531	.9467	.9473	.9348	.9301
GRACE	.7872	.6940	.6929	.7632	.7242	.6844	.8922	.8749	.8588	.8899	.8865	.8315	.8978	.8987	.8949	.9394	.9380	.9363
RGIB-REP	<u>.8313</u>	.7966	.7591	. <u>7875</u>	.7519	.7312	.9017	.8834	.8652	.9832	.9770	.9519	.9723	.9621	.9519	.9509	.9455	.9434
RGIB-SSL	.8930	.8554	.8339	.8694	.8427	.8137	.9225	.8918	.8697	<u>.9829</u>	<u>.9711</u>	.9643	<u>.9655</u>	<u>.9592</u>	<u>.9500</u>	<u>.9499</u>	.9426	.9425

→ RGIB consistently surpasses all the baselines under the unilateral noise:

input noise	Cora			Citeseer			Pubmed			Facebook			Chameleon			Squirrel		
input noise	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8027	.7856	.7490	.8054	.7708	.7583	.8854	.8759	.8651	.9819	.9668	.9622	.9608	.9433	.9368	.9416	.9395	.9411
DropEdge	.8338	.7826	.7454	.8025	.7730	.7473	.8682	.8456	.8376	.9803	.9685	.9531	.9567	.9433	.9432	.9426	.9376	.9358
NeuralSparse	.8534	.7794	.7637	.8093	.7809	.7468	.8931	.8720	.8649	.9712	.9691	.9583	.9609	.9540	.9348	.9469	.9403	<u>.9417</u>
PTDNet	.8433	.8214	.7770	.8119	.7811	.7638	.8903	.8776	.8609	.9725	.9668	.9493	.9610	.9457	.9360	.9469	.9400	.9379
Co-teaching	.8045	.7871	.7530	.8059	.7753	.7668	.8931	.8792	.8606	.9712	.9707	.9714	.9524	.9446	.9447	.9462	.9425	.9306
Peer loss	.8051	.7866	.7517	.8106	.7767	.7653	.8917	.8811	.8643	.9758	.9703	.9622	.9558	.9482	.9412	.9362	.9386	.9336
Jaccard	.8200	.7838	.7617	.8176	.7776	.7725	.8987	.8764	.8639	.9784	.9702	.9638	.9507	.9436	.9364	.9388	.9345	.9240
GIB	.8002	.8099	.7741	.8070	.7717	<u>.7798</u>	.8932	.8808	.8618	.9796	.9647	.9650	.9605	.9521	.9416	.9390	.9406	.9397
SupCon	.8349	.8301	.8025	.8076	.7767	.7655	.8867	.8739	.8558	.9647	.9517	.9401	.9606	.9536	.9468	.9372	.9343	.9305
GRACE	.7877	.7107	.6975	.7615	.7151	.6830	.8810	.8795	.8593	.9015	.8833	.8395	.8994	.9007	.8964	.9392	.9378	.9363
RGIB-REP	.8624	.8313	<u>.8158</u>	.8299	.7996	.7771	.9008	.8822	.8687	.9833	.9723	.9682	.9705	.9604	.9480	.9495	.9432	.9405
RGIB-SSL	.9024	.8577	.8421	.8747	.8461	.8245	.9126	.8889	.8693	.9821	<u>.9707</u>	.9668	<u>.9658</u>	<u>.9570</u>	.9486	<u>.9479</u>	.9429	.9429
1.1.1	Cora			Citeseer			Pubmed		Facebook			Chameleon			Squirrel			
label noise	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8281	.8054	.8060	.7965	.7850	.7659	.9030	.9039	.9070	.9882	.9880	.9886	.9686	.9580	.9362	.9720	.9720	.9710
DropEdge	.8363	.8273	.8148	.7937	.7853	.7632	.9313	.9201	.9240	.9673	.9771	.9776	.9580	.9579	.9578	.9608	.9603	.9698
NeuralSparse	.8524	.8246	.8211	.7968	.7921	.7752	.9272	.9136	.9089	.9781	.9781	.9784	.9583	.9583	.9571	.9633	.9626	.9625
PTDNet	.8460	.8214	.8138	.7968	.7765	.7622	.9219	.9099	.9093	.9879	.9880	.9783	.9585	.9576	.9665	.9633	.9623	.9626
Co-teaching	.8446	.8209	.8157	.7974	.7877	.7913	.9315	.9291	.9319	.9762	.9797	.9638	.9642	.9650	.9533	.9675	.9641	.9655
Peer loss	.8325	.8036	.8069	.7991	<u>.7990</u>	.7751	.9126	.9101	.9210	.9769	.9750	.9734	.9621	.9501	.9569	.9636	.9694	.9696
Jaccard	.8289	.8064	.8148	.8061	.7887	.7689	.9098	.9135	.9096	.9702	.9725	.9758	.9603	.9659	.9557	.9529	.9512	.9501
GIB	.8337	.8137	.8157	.7986	.7852	.7649	.9037	.9114	.9064	.9742	.9703	.9771	.9651	.9582	.9489	.9641	.9628	.9601
SupCon	.8491	.8275	.8256	.8024	.7983	.7807	.9131	.9108	.9162	.9647	.9567	.9553	.9584	.9580	.9477	.9516	.9595	.9511
GRACE	.8531	.8237	.8193	.7909	.7630	.7737	.9234	.9252	.9255	.8913	.8972	.8887	.9053	.9074	.9075	.9171	.9174	.9166
RGIB-REP	.8554	.8318	.8297	<u>.8083</u>	.7846	.7945	<u>.9357</u>	.9343	.9332	.9884	.9883	.9889	.9785	.9797	.9785	.9735	.9733	.9737
RGIB-SSL	.9314	.9224	.9241	.9204	.9218	.9250	.9594	.9604	.9613	.9857	<u>.9881</u>	.9857	<u>.9730</u>	. <u>9752</u>	<u>.9744</u>	<u>.9727</u>	<u>.9729</u>	.9726

\rightarrow the graph representation has obvious improvement in distribution:

Table 5: Comparison of alignment. Here, std. is short for *standard training*, and SSL/REP are short for RGIB-SSL/RGIB-REP, respectively.

dataset		Cora		Citeseer					
method	std.	REP	SSL	std.	REP	SSL			
clean	.616	.524	.475	.445	.439	.418			
$\varepsilon\!=\!20\%$.687	.642	.543	.586	<u>.533</u>	.505			
$\varepsilon\!=\!40\%$.695	.679	.578	.689	.623	.533			
$\varepsilon \!=\! 60\%$.732	.704	.615	.696	<u>.647</u>	.542			

(a) Standard (b) RGIB-REP (c) RGIB-SSL Figure 6: Uniformity distribution on Citeseer with $\varepsilon = 40\%$.

Future Directions

New instantiations of RGIB, e.g., approximation of the MI terms New scenarios with noise, e.g., feature noise, other structural noise New graph learning tasks, e.g., node classification, graph classification New theoretical analysis, e.g., information theory, graph generation model