KGTuner: Efficient Hyper-parameter Search for Knowledge Graph Learning

https://github.com/AutoML-Research/KGTuner

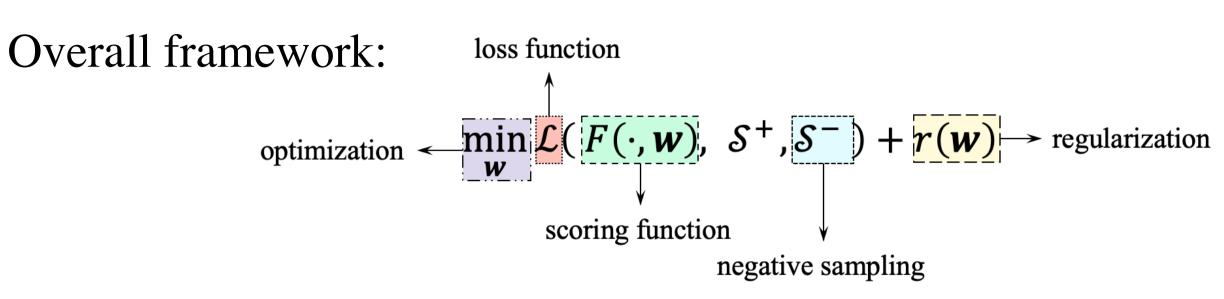
Yongqi Zhang,

Zhanke Zhou,

Quanming Yao,

zhangyongqi@4paradigm.com cszkzhou@comp.hkbu.edu.hk qyaoaa@tsinghua.edu.cn liyong07@tsinghua.edu.cn

Knowledge Graph (KG) Learning



Given a scoring function, the model is trained under configuration of negative sampling, loss function, regularization and optimization.

component	name	type	range				
negative sampling	# negative samples	cat	{32, 128, 512, 2048, 1VsAll, kVsAll}				
loss function	loss function gamma (MR) adv. weight (BCE_adv)	cat float float	{MR, BCE_(mean, sum, adv), CE} [1, 24] [0.5, 2.0]				
regularization	regularizer reg. weight (not None) dropout rate	cat float float	{FRO, NUC, DURA, None} $ [10^{-12}, 10^2] \\ [0, 0.5] $				
optimization	optimizer learning rate initializer batch size dimension size inverse relation	cat float cat int int bool	{Adam, Adagrad, SGD} [10 ⁻⁵ , 10 ⁰] {uniform, normal, xavier_uniform, xavier_norm} {128, 256, 512, 1024} {100, 200, 500, 1000, 2000} {True, False}				

Hyper-parameter (HP) Optimization for KG Learning

Denote **x** as an configuration of HPs.

Definition 1 (Hyper-parameter search for KG embedding). The problem of HP search for KG embedding model is formulated as

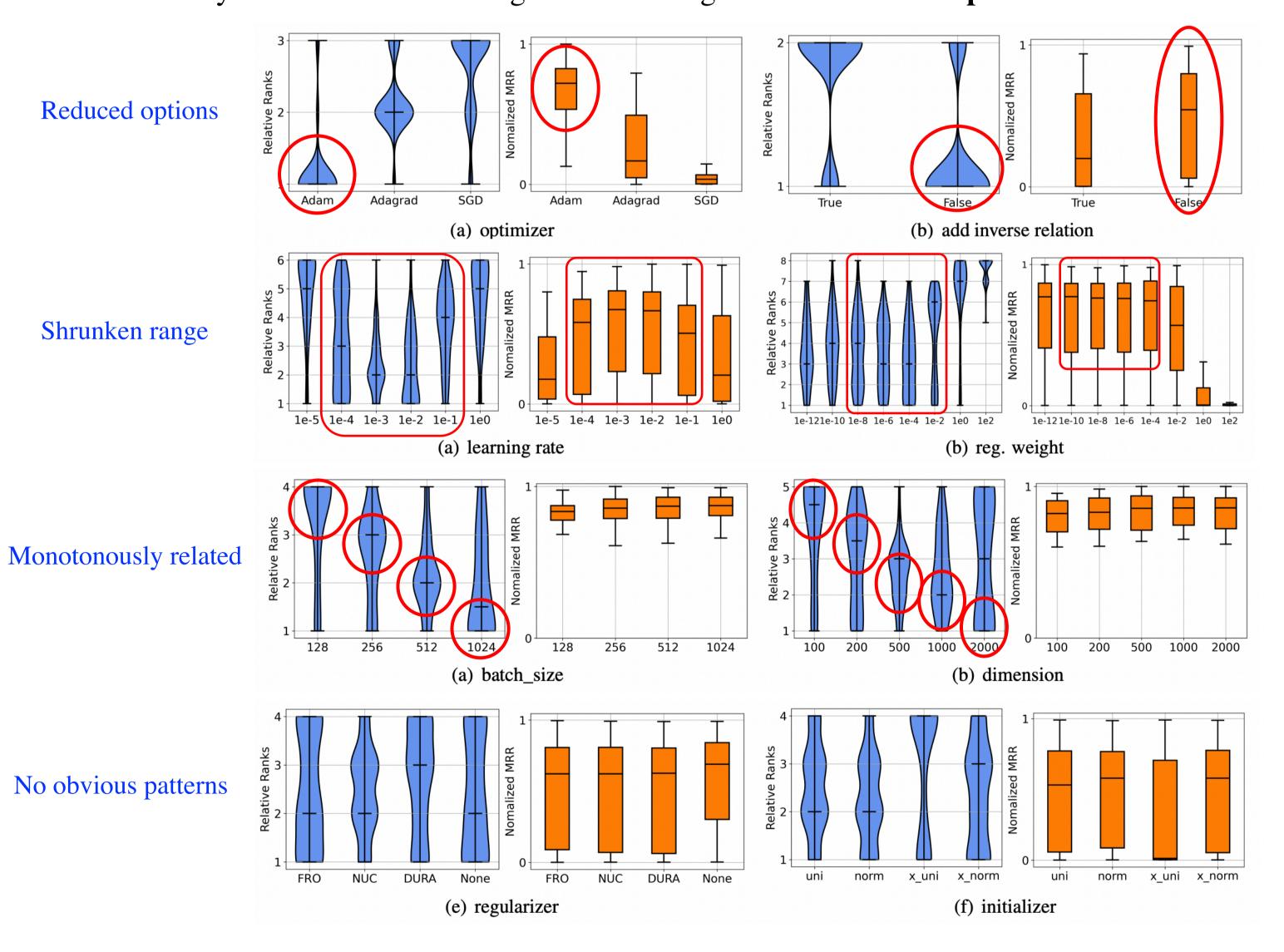
- $\mathbf{x}^* = \arg\max_{\mathbf{x} \in \mathcal{X}} \mathcal{M}(F(P^*, \mathbf{x}), D_{val}),$
- $P^* = \arg\min_{P} \mathcal{L}(F(P, \mathbf{x}), D_{tra}).$
- Three major aspects for efficiency in Def. 1
- 1. the size of search space χ
- 2. the validation curvature of \mathcal{M}
- 3. the evaluation **cost** in solving arg min \mathcal{L}
- The conventional HPO methods do not seriously consider the three aspects.

Understanding the HP Search Problem

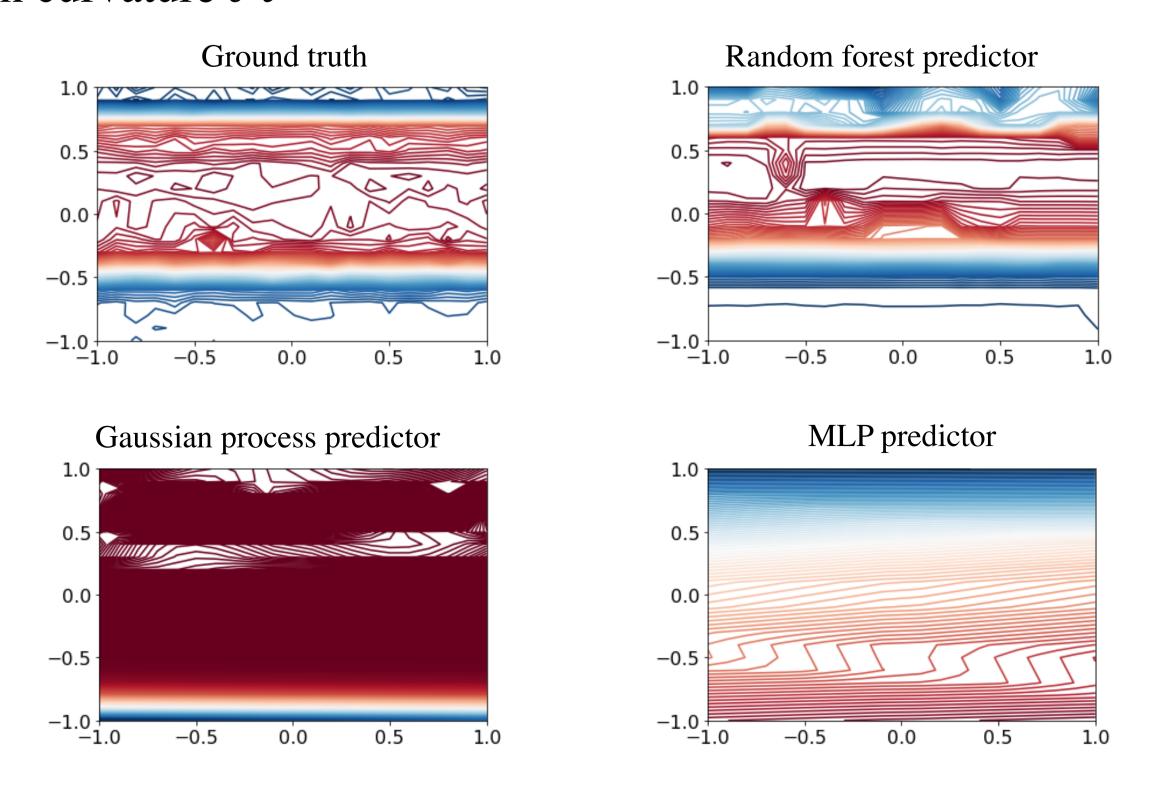
Search space X

We classify the HPs into four categories according to distributions of performance.

(3)



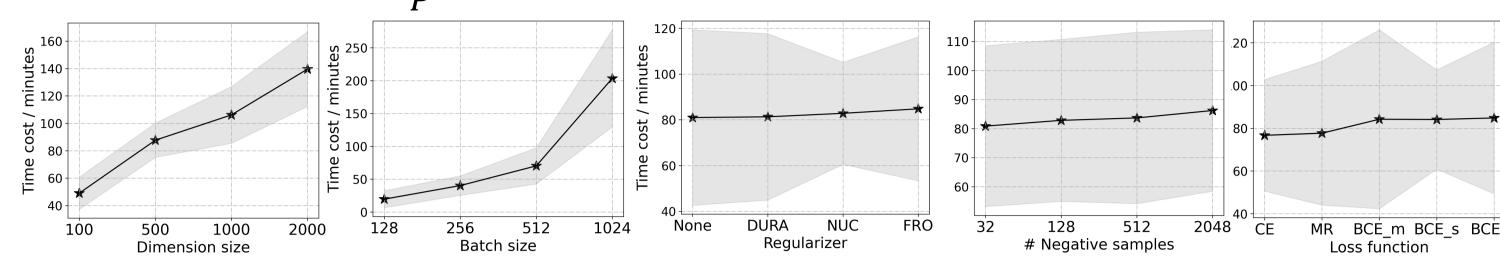
Validation curvature \mathcal{M}



Random forest can approximate the validation curvature better.

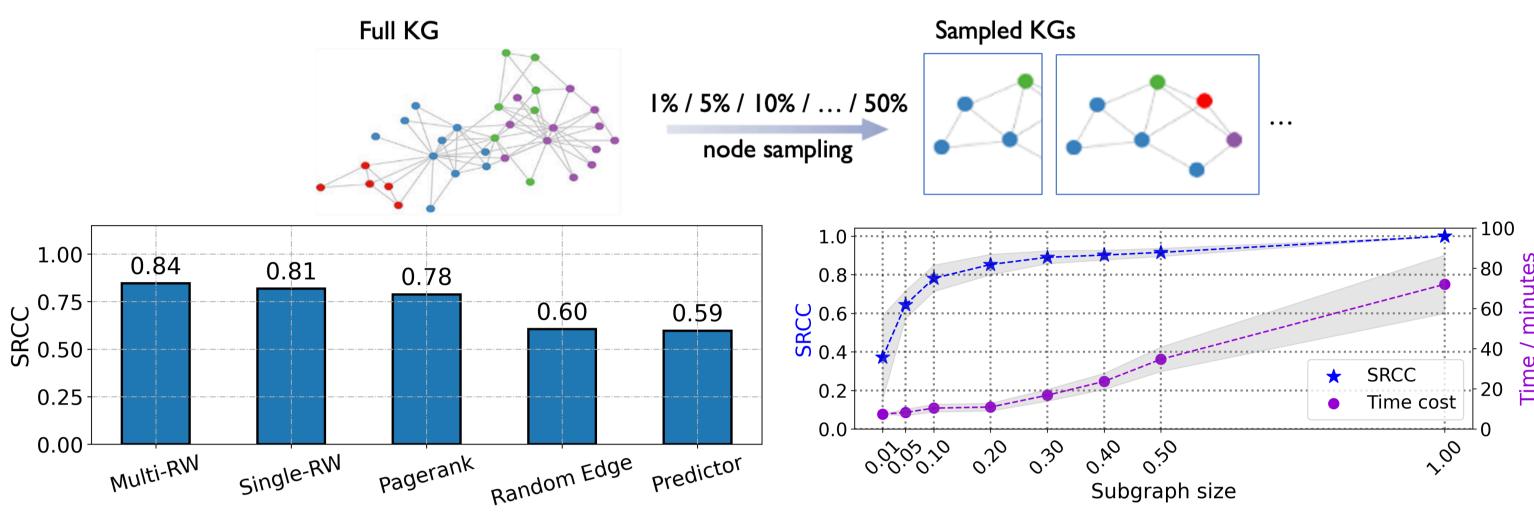
Understanding the HP Search Problem (Continued)

Evaluation cost arg min L



Observation: batch size \(\) or dimension \(\) \Rightarrow time cost \

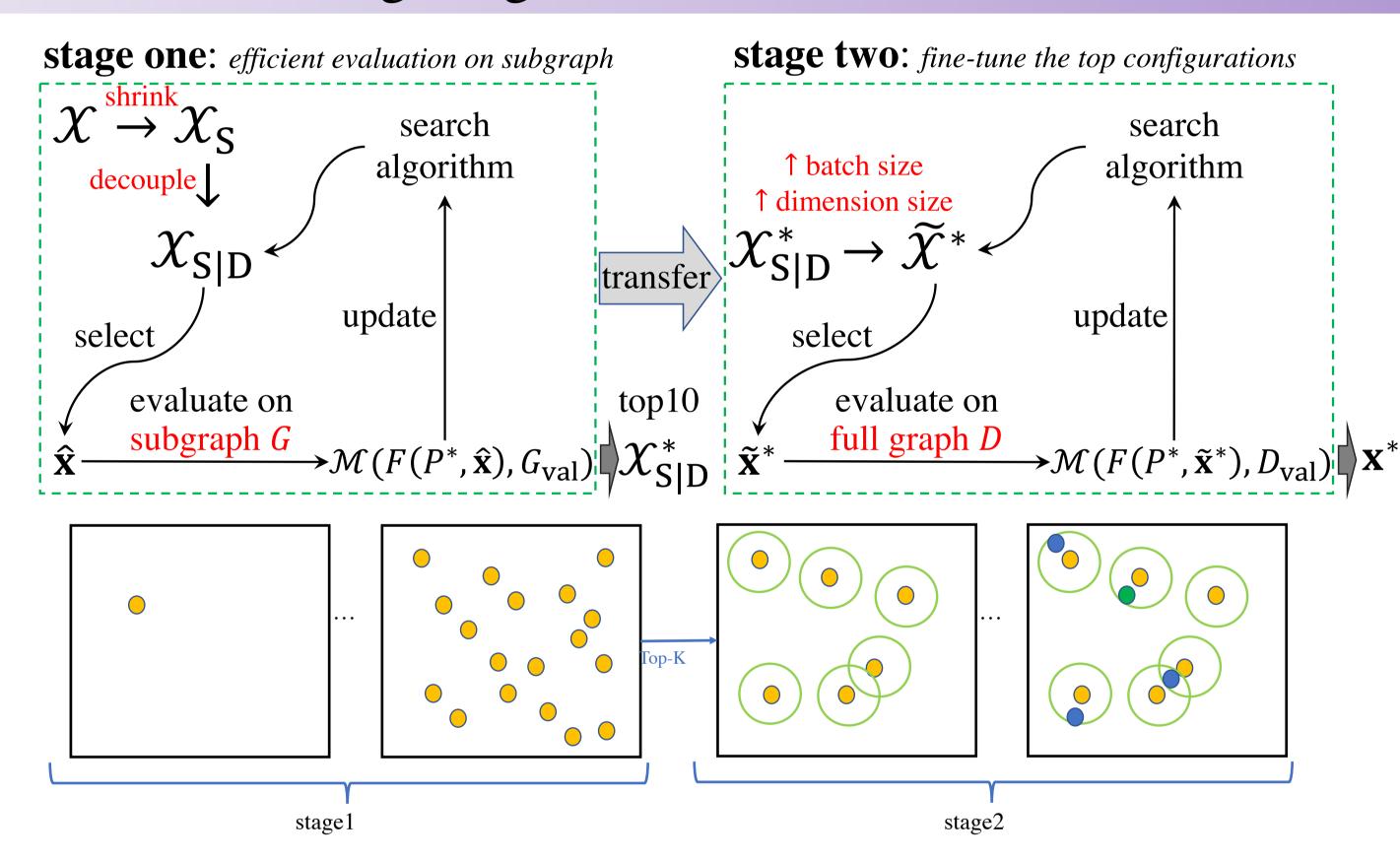
Using subgraph evaluation to approximate full graph evaluation:



Observations:

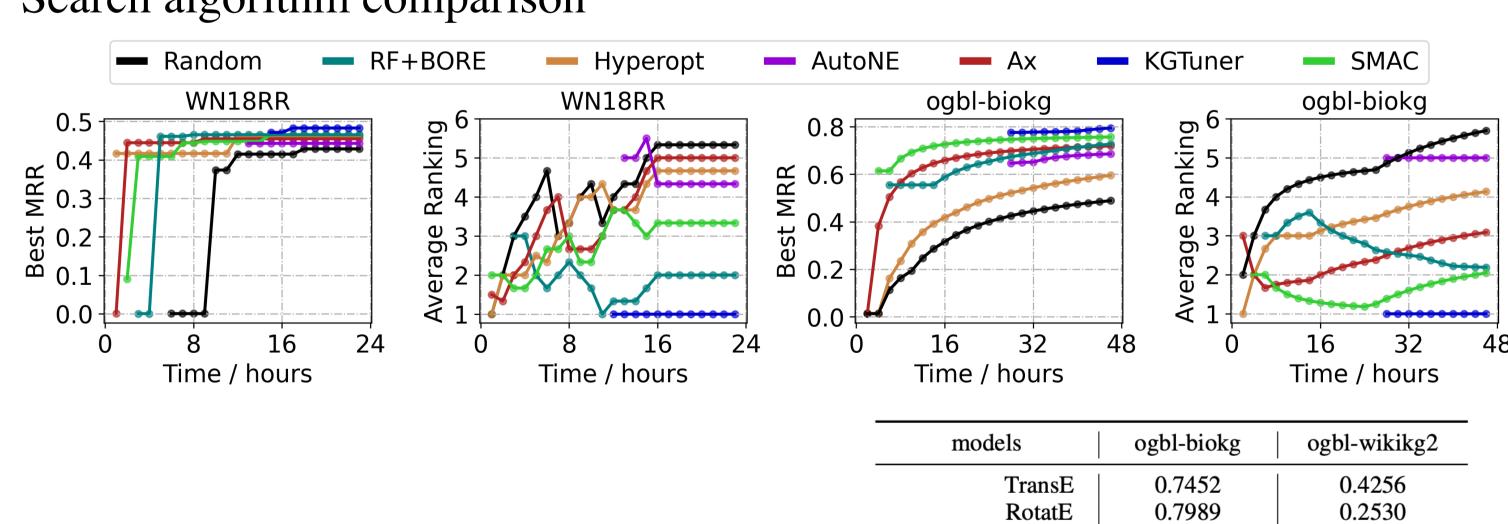
- Multi-start random walk is a better strategy to sample subgraphs.
- To balance the consistency and cost, the subgraph with 20% nodes is the better choice

KGTuner: Two-stage Algorithm



Experiments

Search algorithm comparison



original

<u>0.347</u> <u>0.255</u>

0.557

DistMult

ComplEx

AutoSF

0.8095

0.8320

ComplEx $|0.8385 (3.58\%\uparrow)|0.4942 (22.72\%\uparrow)$

 $|0.7781 (4.41\%\uparrow)|0.4739 (11.34\%\uparrow)$ $|0.8013 (0.30\%\uparrow)|0.2944 (16.36\%\uparrow)$ $0.8241 (2.46\%\uparrow) 0.4837 (29.71\%\uparrow)$

 $0.8354 (0.41\%\uparrow) | 0.5222 (0.69\%\uparrow)$

0.3729

0.4027

0.5186

16.16%

Performance comparison

					average improvement			2.23		
		WN18RR					FB15k-237			-
		MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	
Original	ComplEx	0.440	0.410	0.460	0.510	0.247	0.158	0.275	0.428	-
	DistMult	0.430	0.390	0.440	0.490	0.241	0.155	0.263	0.419	
	RESCAL	0.420	-	-	0.447	0.270	-	-	0.427	
	ConvE	0.430	0.400	0.440	0.520	0.325	0.237	0.356	0.501	
	TransE	0.226	-	-	0.501	0.294	-	-	0.465	
	RotatE	0.476	0.428	0.492	<u>0.571</u>	0.338	0.241	0.375	0.533	
	TuckER	0.470	0.443	0.482	0.526	0.358	0.266	0.394	0.544	
LibKGE (Ruffinelli et al., 2019)	ComplEx	0.475	0.438	0.490	0.547	0.348	0.253	0.384	0.536	-
	DistMult	0.452	0.413	0.466	0.530	0.343	0.250	0.378	0.531	
	RESCAL	0.467	0.439	0.480	0.517	0.356	0.263	0.393	0.541	
	ConvE	0.442	0.411	0.451	<u>0.504</u>	0.339	0.248	0.369	<u>0.521</u>	
	TransE	0.228	0.053	0.368	0.520	0.313	0.221	0.347	0.497	
KGTuner (ours)	ComplEx	0.484	0.440	0.506	0.562	0.352	0.263	0.387	0.530	-
	DistMult	0.453	0.407	0.468	0.548	0.345	0.254	0.377	0.527	
	RESCAL	0.479	0.436	0.496	0.557	0.357	0.268	0.390	0.535	
	ConvE	0.437	0.399	0.449	0.515	0.335	0.242	<u>0.368</u>	0.523	
	TransE	0.233	0.032	0.399	0.542	0.327	0.228	0.369	0.522	
	RotatE	0.480	0.427	0.501	0.582	0.338	0.243	0.373	0.527	

0.500

TuckER **0.480** <u>0.437</u>