

Abstract: We perform the first comprehensive study of graph reconstruction attack (GRA). By taking GNN as a Markov chain and theory-guided mechanisms for attack and defense, respectively.

recover the original linking relations $\hat{A^*}$ of the training graph $G_{train} = (A, X)$, namely,

GRA problem as approximating the original Markov chain by the attack chain.

original adjacency A) by the **attack chain** (lower chain with the recovered adjacency \hat{A}).

On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation

Zhanke Zhou, Chenyu Zhou, Xuan Li, Jiangchao Yao, Quanming Yao, Bo Han

A Comprehensive Study of GRA

$$\begin{aligned} \text{IC-GRA: } \hat{A}^* &= \arg \max_{\hat{A}} \underbrace{\alpha_p I(H_A; H_{\hat{A}}^i)}_{\text{propagation approximation}} \\ &+ \underbrace{\alpha_o I(Y_A; Y_{\hat{A}}) + \alpha_s I(Y; Y_{\hat{A}})}_{\text{outputs approximation}} - \underbrace{\alpha_c H(\hat{A})}_{\text{complexity}}. \end{aligned}$$

MC-GPB: $\boldsymbol{\theta}^* = \arg\min\sum -I(Y; \boldsymbol{H}_A^i) + \beta^i I(A; \boldsymbol{H}_A^i)$ $\int eta_c I(oldsymbol{H}_A^i;oldsymbol{H}_A^{i+1})$.

Table 3: Results of MC-GRA with

X	H_A	\hat{Y}_A	Y	Cora	Citeseer	Polblogs	USA	Brazil	AIDS
\checkmark	\checkmark			.864 (1 <mark>0.6%</mark> ↑)	.912 (<mark>3.5%</mark> ↑)	.831 (<mark>8.9%</mark> ↑)	.883 (<mark>3.8%</mark> ↑)	.771 (<mark>1.7%↑</mark>)	.574 (<mark>10.1%↑</mark>)
\checkmark		\checkmark		.839 (7.4%↑)	.902 (2.3% ↑)	.836 (<mark>8.2%</mark> ↑)	.913 (10.5%↑)	.800 (<mark>9.2%</mark> †)	.567 (<mark>8.8%</mark> ↑)
\checkmark			\checkmark	.896 (<mark>5.5%</mark> ↑)	.918 (1.2%↑)	.837 (1 <mark>8.7%</mark> ↑)	.825 (<mark>13.3%</mark> ↑)	.753 (<mark>22.8%</mark> ↑)	.574 (<mark>9.9%</mark> ↑)
\checkmark	\checkmark	\checkmark		.866 (1 <mark>0.8%</mark> †)	.921 (4.5% ↑)	.839 (<mark>9.9%</mark> ↑)	.878 (<mark>3.5%</mark> ↑)	.776 (<mark>2.6%</mark> ↑)	.572 (<mark>9.7%</mark> ↑)
\checkmark	\checkmark		\checkmark	.905 (<mark>6.5%</mark> ↑)	.930 (<mark>2.5%</mark> ↑)	.832 (<mark>6.8%</mark> ↑)	.878 (<mark>3.5%</mark> ↑)	.758 (<mark>2.0%</mark> ↑)	.603 (<mark>15.5%</mark> ↑)
\checkmark		\checkmark	\checkmark	.897 (<mark>5.6%</mark> ↑)	.928 (<mark>2.3%</mark> ↑)	.839 (<mark>6.8%</mark> †)	.870 (<mark>3.3%</mark> †)	.758 (<mark>3.7%</mark> ↑)	.567 (<mark>8.6%</mark> ↑)
\checkmark	\checkmark	\checkmark	✓	.904 (<mark>6.4%</mark> ↑)	.931 (<mark>2.6%</mark> ↑)	.853 (<mark>9.2%</mark> ↑)	.870 (<mark>1.9%</mark> ↑)	.760 (<mark>5.9%</mark> ↑)	.588 (<mark>12.6%</mark> ↑)

MI	Cora	Citeseer	Polblogs	USA	Brazil	AIDS
$I(A; \boldsymbol{H}_A)$.706 (7.8%↓)	.750 (1.3%↓)	.724 (5.1%↓)	.716 (15.8%↓)	.745 (1.7%↓)	.564 (3.4%↓)
$I(A; \hat{Y}_A)$.704 (0.1%↓)	.730 (1.7%↓)	.705 (8.7%↓)	.587 (28.9%↓)	.692 (5.5%↓)	.559 (0.4%↓)
$I(A; \boldsymbol{H}_{\boldsymbol{\hat{A}}}^{1})$.625 (9.9%↓)	.691 (9.8%↓)	.506 (26.3%↓)	.300 (64.5%↓)	.609 (25.1%↓)	.514 (10.6%↓)
Acc.	.734 (3.0%↓)	.602 (4.4%↓)	.830 (1.1%↓)	.391 (16.8%↓)	.808 (<mark>5.1%</mark> ↑)	.668 (<mark>0.0%</mark> ↑)

(c) Defensive training by MC-GPB.

Empirical Study

standard GNNs	. Relative prom	otions (in %) are	computed w.r.t.	results in Tab. 2.
---------------	-----------------	-------------------	-----------------	--------------------

Table 4: Results of GRA with MC-GPB protected GNNs. Relative reductions are computed w.r.t. results in Tab. 1. $I(A; \boldsymbol{H}_A), I(A; \hat{\boldsymbol{Y}}_A)$ are non-learnable GRA (He et al., 2021a). $I(A; \boldsymbol{H}_{\hat{\boldsymbol{\lambda}}})$ is learnable, *i.e.*, GraphMI (Zhang et al., 2021).