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LLM Unlearning Methods

Bi-objective Goal

1) Unlearn model knowledge on unlearn set;
2) Retain model performance on retain set.

What is the full name of the geology

question  ,uthor born in Karachi, Pakistan on What is the capital of Japan?
06/30/19757
original The author’s name is Hina Ameen. The capital of Japan is Tokyo.

unlearn l l retain

d As of now, the full name of the authors
is not mentioned.

LLM Unlearning Methods
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Unlearn Objective

unlearne The capital of Japan is Tokyo.

Retain Objective

Each objective possesses unique properties, yet there
Is no unified toolkit available to comprehend them.

Gradient Effect (G-effect)

From a gradient perspective, analyzing the impacts of
unlearning objectives on model performance.

unlearn: R(Dy; 0,) » R(Dy; 0,) retain: R(D,;0,) < R(D,;0,)
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Unlearn G-effect, negative ¢, is preferred for removal;
Retain G-effect, positive e, is preferred for retention.
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 We can disentangle the impacts of unlearn and retain
objectives through G-effect, yet hard for metrics.

» G-effect allows us to quantify positive/negative impacts even
for the bi-objectives with opposing impacts.

» Gradients offer deeper insights into the effects of data, layers,
or sub-components within objectives.

Case Studies

With the G-effect, we test a set of unlearn objectives (GA, NPO,
PO, RMU) and retain objectives (NLL, KL, RR) separately.

Unlearn Objective 1. Gradient Ascent (GA)
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inverse likelihood

GA: Ep Y, logP(si|ss; 0) Gradient: Ep Y, VoP(si|ss; 0)
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Observation 1. Unlearning negatively impacts retention.
Reason. The inverse likelihood wrongly focuses more on
sufficiently unlearned tokens, leading to over-unlearning.

Observation 2. Unlearning affects bottom layers of LLMs more.
Reason. Large gradients accumulate due to the chain rule, a
general scenario holds for many other unlearning objectives.

Improvement 1. Weighted GA (WGA)
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Unlearn Objective 2. Negative Preference Optimization (NPO)
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Wnpo reweighting term.

How to understand the reweighting mechanism wy,, within NPO?

Larger weights are assigned to those
instances with larger retaining PG-effects.
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Observation 4. The NPO weight serves as early stopping.
Observation 5. The NPO reweighting mechanism w,,, prioritizes

iInstances that less damages retention.
Improvement 2. Token-wise NPO (TNPO)
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same reweighting scheme yet applied point-wise
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Observation 6. NLL and KL are both effective for retention, while
KL can lead to overall larger retain G-effect, thus preferred.

Note. The unlearn G-effect for unlearn objective is much larger
than for retain objectives. Thus, we do not need to worry about the
side effect on unlearning.
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