Question: How to **generate potential outlier labels** for OOD detection without auxiliary data?

Given a pre-trained model, ID classes \mathcal{Y}_{id} are defined by the classification task of interest, instead of the classes used in pre-training.

OOD detector: $G_{\lambda}(x; \mathcal{Y}_{\text{id}}, \mathcal{I}, \mathcal{T}) = \begin{cases} \text{ID} & S(x) \geq \lambda \\ \text{OOD} & S(x) < \lambda \end{cases}$

Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection

Background: Zero-shot OOD Detection **Nethod:** Envisioning Outlier Exposure **Expondent Experiments**

Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, Tongliang Liu, Bo Han

Motivation

Design principle: Guide LLM to generate the desired outlier class label based on the **visual similarity rule**

Q: I have gathered images of K distinct categories: \mathcal{Y}_{id} . Summarize what broad categories these categories might fall into based on visual features. Now, I am looking to identify L classes that visually resemble these broad categories but have no direct relation to these broad categories. Please list these L categories for me.

Far OOD prompt

A: These L categories are:

Figure 3: LLM prompt for far OOD detection, consisting of both the contents of Q and A.

Q: Given the image category y_i , please suggest visually similar categories that are not directly related or belong to the same primary group as y_i . Provide suggestions that share visual characteristics but are from broader and different domains than y_i .

Near OOD prompt

A: There are l classes similar to y_i , and they are from broader and different domains than y_i .

Figure 4: LLM prompt for near OOD detection.

Q: I have a dataset containing K different species of *class-type*. I need a list of L distinct class-type species that are NOT present in my dataset, and ensure there are no repetitions in the list you provide. For context, the species in my dataset are: \mathcal{Y}_{id} .

Fine-grained OOD prompt

A: The other L class-type species not in the dataset are:

Implementation

Without hitting the GT OOD, these potential outlier classes can still enhance performance in OOD detection

Figure 8: T-SNE visualizations obtained by the classifier output. ID set: ImageNet-10; OOD set: ImageNet-20. We use distinct colors to represent different OOD classes. The illustrated envisioned OOD name is the class assigned with the corresponding cluster, and its examples are generated by Stable Diffusion (Rombach et al., 2022).

We can employ LLMs to envision potential outlier class labels for OOD detection since LLMs know the visual features of lots of categories

FPR95: 0.29%, AUROC: 99.93%

We design a new score function is to better distinguish between ID and OOD score distributions. First, the label-wise matching score is

$$
_i(x)=\frac{\mathcal{I}(x)\cdot\mathcal{T}(t_i)}{\|\mathcal{I}(x)\|\cdot\|\mathcal{T}(t_i)\|};\ \ \, t_i\in\mathcal{Y}_{\text{id}}\cup\mathcal{Y}_{\text{outlier}}
$$

The proposed OOD detection score function

$$
S_{\text{EOE}}(x; \mathcal{Y}_{\text{id}}, \mathcal{Y}_{\text{dood}}, \mathcal{T}, \mathcal{I}) = \max_{i \in [1, K]} \frac{e^{s_i(x)/\tau}}{\sum_{j=1}^{K+L} e^{s_j(x)/\tau}} - \max_{k \in [K+1, K+L]} \frac{\beta e^{s_k(x)/\tau}}{\sum_{j=1}^{K+L} e^{s_j(x)/\tau}}
$$

Existing method: Using only closed-set ID classes

We wonder

1) if this issue arises because the pre-trained VLMs are not strong enough

or

2) if it is attributable to the usages of these pretrained models, e.g., an exclusive reliance on closed-set ID classes

Ground truth: Incorporating with actual OOD class labels (unavailable)

ID dataset: CUB-200-2011, OOD dataset: Places

Building a text-based classifier with only closed-set labels largely restricts the inherent capability of VLMs

EOE (Ours): Incorporating with envisioned outlier classes

EOE can be effectively scaled to the ImageNet-1K dataset and is comparable to fine-tuning methods

Table 2: Zero-shot far OOD detection results for ImageNet-1K as ID dataset. The black bold indicates the best performance. The gray indicates that the comparative methods require training or an additional massive auxiliary dataset. Energy (FT) requires fine-tuning, while Energy is post-hoc.

For near OOD detection, EOE increases the average OOD performance by 2.13% in FPR95

Table 3: Zero-shot near OOD detection results. The bold indicates the best performance on each dataset, and the gray indicates methods requiring an additional massive auxiliary dataset.

For fine-grained OOD detection, EOE increases the average OOD performance by 3.59% in FPR95

Table 4: Zero-shot fine-grained OOD detection results. The bold indicates the best performance on each dataset, and the gray indicates methods requiring an additional massive auxiliary dataset.

