

From Debate to Equilibrium: **Belief-Driven Multi-Agent LLM Reasoning via Bayesian Nash Equilibrium**

Yi Xie*, Zhanke Zhou*, Chentao Cao, Qiyu Niu, Tongliang Liu, Bo Han

Motivation: Limitations of Existing Multi-Agent Frameworks

•Prohibitive Communication Costs (X): MAD relies on explicit message passing, incurring substantial token. •No Convergence Guarantees (🔀): lack theoretical assurances of converging to a stable, effective solution.

•Hierarchical & Scalable Architecture (🔽): Enables effective coordination in large ensembles via a local-to-global.

Theoretical guarantee:

We prove that ECON converges efficiently to a Bayesian Nash Equilibrium (BNE) by deriving a sublinear Bayesian regret bound. The analysis proceeds as follows:

- BNE Existence: We first establish the existence of a BNE strategy profile π^* in our multi-agent LLM framework, grounded in Glicksberg's Fixed Point Theorem.
- 2. Performance Difference Lemma: We apply the value difference between the optimal policy π^* and the current policy π^t to the advantage function: $V^*(s) - V^{\pi^t}(s) = \frac{1}{1-\nu} \mathbb{E}_{s' \sim d_{\pi^*}, a \sim \pi^*} \left[A^{\pi^t}(s', a) \right]$
- 3. Sublinear Regret Bound: By bounding the advantage with the Q-function estimation error (ε_t) and policy suboptimality (δ_t), both of which decrease at a rate of $\mathcal{O}(1/\sqrt{t})$, we derive the final regret

bound for ECON: $\leq O\left(\frac{N\sqrt{T}}{1-\gamma}\right)$

Effective	Scala	bility	/ thi
			/

aset	Inference Strategy	LLaMA3.1 70B		Mixtral 8x7b		Mixtral 8x22b		
usee		Token Usage	Performance	Token Usage	Performance	Token Usage	Performance	
лн	Multi-Agent Debate (3 rounds) RAP	2154.87 2653.27	71.58 68.71	1462.12 1737.73	31.28 33.99	5345.56 6668.55	67.41 62.53	
	ECON (with detailed strategy)	3270.06	72.38	2150.23	26.18	8054.03	68.23	
	Self Consistency (64 rounds)	11917.00	67.39	8066.21	31.58	29616.13	62.21	
	ECON	1629.79	81.47	1128.23	35.02	4270.86	72.29	
M8K	Multi-Agent Debate (3 rounds) RAP	1391.57 1907.86	86.32 81.33	1463.40 1248.66	70.19 72.03	5714.05 6517.77	81.95 76.97	
	ECON (with detailed strategy) Self Consistency (64 rounds) ECON	2772.24 9574.25 1131.65	85.17 89.56 92.70	1188.13 6601.34 1284.98	65.37 71.08 76.97	9341.60 24671.91 4715.31	81.46 86.24 88.20	
M-Hard	Multi-Agent Debate (3 rounds) RAP	3030.73 1768.72	41.98 38.97	1478.14 1036.11	20.04 22.47	9250.78 6464.52	45.21 42.79	
	ECON (with detailed strategy)	3662.64	44.12	2239.07	18.52	11464.98	41.04	
	Self Consistency (64 rounds) ECON	16724.69 1518.76	<u> </u>	11668.19	<u> 22.47</u> 25.76 <u> </u>	74544.25	44.19	

Planning Benchmark: On the highly complex TravelPlanner benchmark, ECON achieves a Final Pass Rate of 9.3%, more than doubling MAD (3.7%).

0.7

0.6

0.7

2.1

4.4

7.1

CON (GP1-4)	100	71.4	15.0	52.1	25.7	7.2	100	82.1	26.6	52.4	17.0	
Sole-planning												
Direct _{GPT-3.5-Turbo}	100	60.2	4.4	11.0	2.8	0	100	59.5	2.7	9.5	4.4	
oT _{GPT-3.5-Turbo}	100	66.3	3.3	11.9	5.0	0	100	64.4	2.3	9.8	3.8	
eAct _{GPT-3.5-Turbo}	82.2	47.6	3.9	11.4	6.7	0.6	81.6	45.9	2.5	10.7	3.1	
eflexion _{GPT-3.5Turbo}	93.9	53.8	2.8	11.0	2.8	0	92.1	52.1	2.2	9.9	3.8	
birect _{Mixtral-8x7B-MoE}	100	68.1	5.0	3.3	1.1	0	99.3	67.0	3.7	3.9	1.6	
Direct _{Gemini Pro}	93.9	65.0	8.3	9.3	4.4	0.6	93.7	64.7	7.9	10.6	4.7	
Direct _{GPT-4-Turbo}	100	80.4	17.2	47.1	22.2	4.4	100	80.6	15.2	44.3	23.1	
ebate (GPT-4)@3round	97.7	78.9	15.6	43.3	20.6	6.7	98.2	79.5	18.8	41.7	22.9	

ugh Hierarchical Coordination: A single coordinator struggles with excessive agents (blue line). ECON forms a Global Nash Equilibrium from multiple Local Equilibria, enables performance to scale effectively (red line) from 3 to 9 Execution LLMs.

Consumption Analysis: ECON achieves SOTA accuracy while being significantly more token-efficient. On MATH, it uses 7x fewer tokens than Self-Consistency yet yields 14% higher performance.

paper

code

