

AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning *Yongqi Zhang, *Zhanke Zhou, Quanming Yao, Xiaowen Chu, Bo Han

Contact: zhangyongqi@4paradigm.com, cszkzhou@comp.hkbu.edu.hk

TL;DR: An important design component of GNN-based KG reasoning methods is called the ropagation path, which contains a set of involved entities in each propagation step. Existing d-designed propagation paths, ignoring the correlation between the entities and query relation. In addition, the number of involved entities will explosively grow at larger opagation steps. In this work, we are motivated to learn an adaptive propagation path in order to er out irrelevant entities while preserving promising targets.

Background: KG Reasoning

Applications: QA / Recommendation

Graph Neural Network-based methods for KG reasoning propagate the message with the graph structure

update entity representation at each propagation step

The Propagation Path

Query-dependent propagation path $\widehat{\mathcal{G}}_{e_a,r_a}^L$

 $\square \hat{\mathcal{G}}_{e_q,r_q}^L = \left\{ \mathcal{V}_{e_q,r_q}^0, \mathcal{V}_{e_q,r_q}^1, \dots, \mathcal{V}_{e_q,r_q}^L \right\} \text{ as the sets of involved entities}$ \square in each propagation step for query $(e_q, r_q, ?)$

Problems when L is large

- □ *Full* propagation: large memory cost & over-smoothing
- **Constrained** propagation: extremely high inference cost
- □ *Progressive* propagation: exponentially increased nodes

Problem & Challenges

Problem formulation: Reduce the size of propagation path through **sampling**

$$\widehat{\mathcal{G}}_{e_{q},r_{q}}^{L} = \{ \mathcal{V}_{e_{q},r_{q}}^{0}, \mathcal{V}_{e_{q},r_{q}}^{1}, ..., \mathcal{V}_{e_{q},r_{q}}^{L} \},$$

t. $\mathcal{V}_{e_{q},r_{q}}^{\ell} = \begin{cases} \{e_{q}\} & \ell = 0\\ S(\mathcal{V}_{e_{q},r_{q}}^{\ell-1}) & \ell = 1 \dots L \end{cases}.$

Two challenges of the sampling strategy
$$S(\cdot)$$

the target answer e_a is unknown given $(e_q, r_q, ?)$

□ semantic dependency is complex

Existing sampling approaches are not applicable **n** no target preserving **D** no relation consideration **D** no direct supervision

Method: adaptively sample semantically relevant entities during propagation

Design1: Connection-preserving Incremental Sampling

 \Box Key idea: Preserve the previous entities \mathcal{V}^0 & sample from the newly visited ones

□ Incremental sampling with only linear complexity

D Details in each step: Candidate generation and sampling

Candidate generation:

- the newly-visit neighboring entities of last step $\overline{\mathcal{V}}_{e_{q},r_{q}}^{\ell} := \operatorname{CAND}(\mathcal{V}_{e_{q},r_{q}}^{\ell-1}) = \mathcal{N}(\mathcal{V}_{e_{q},r_{q}}^{\ell-1}) \setminus \mathcal{V}_{e_{q},r_{q}}^{\ell-1}.$
 - e.g. (1) (3) (4) (5) (6) when l = 1(1) (3) (4) (7) (8) when l = 2
- Candidate sampling:

sample K entities without replacement from candidates $\mathcal{V}^{\ell}_{e_q,r_q} := \mathcal{V}^{\ell-1}_{e_q,r_q} \cup \text{SAMP}(\overline{\mathcal{V}}^{\ell}_{e_q,r_q}).$

> (5) (6) when l = 1(4) (7) when l = 2

Design2: Learning-based and Sematic-aware Distribution

Key idea: Introduce a parameterized distribution & borrow knowledge from the GNN

$$\mathcal{V}^{\ell}_{e_q,r_q} = S(\mathcal{V}^{\ell-1}_{e_q,r_q}; \boldsymbol{\theta}^{\ell}$$

Parameterized sampling distribution:

- \square Sharing the knowledge in GNN representations h_{ρ}^{ℓ}
- \square Adaptive based on the learnable parameters θ^{ℓ}

$$p^{\ell}(e) := \exp\left(g(\boldsymbol{h}_{e}^{\ell}; \boldsymbol{\theta}^{\ell})/\tau\right) \Big/ \sum_{e' \in \overline{\mathcal{W}}_{eq, rq}^{\ell}} \exp\left(g(\boldsymbol{h}_{e'}^{\ell}; \boldsymbol{\theta}^{\ell})/\tau\right)$$

Learning strategy:

Gumbel-trick to enable backward propagation on hard samples.

□ Sampling: get top-K based on gumbel-logits

 $G_e \coloneqq g(\mathbf{h}_e^{\ell}; \boldsymbol{\theta}^{\ell}) - \log(-\log U_e)$ with $U_e \sim \text{Uniform}(0,1)$ for the candidate entities □ Enable backpropagation: straight-through estimation

$$h_e^{\ell} = (1 - \text{no}_{\text{grad}}(p^{\ell}(e)) + p^{\ell}(e)) \cdot h_e^{\ell}$$
 for the selected entities

Comprehensive Experiments

• Evaluation with transductive settings

type	models	Family			UMLS			WN I8RR			FB15k237			NELL-995			YAGO3-10		
		MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
non-GNN	ConvE	0.912	83.7	98.2	0.937	92.2	96.7	0.427	39.2	49.8	0.325	23.7	50.1	0.511	44.6	61.9	0.520	45.0	66.0
	QuatE	0.941	89.6	99.1	0.944	90.5	99.3	0.480	44.0	55.1	0.350	25.6	53.8	0.533	46.6	64.3	0.379	30.1	53.4
	RotatE	0.921	86.6	98.8	0.925	86.3	99.3	0.477	42.8	57.1	0.337	24.1	53.3	0.508	44.8	60.8	0.495	40.2	67.0
	MINERVA	0.885	82.5	96.1	0.825	72.8	96.8	0.448	41.3	51.3	0.293	21.7	45.6	0.513	41.3	63.7	-	-	-
	DRUM	0.934	88.1	<u>99.6</u>	0.813	67.4	97.6	0.486	42.5	58.6	0.343	25.5	51.6	0.532	46.0	66.2	0.531	45.3	67.6
	RNNLogic	0.881	85.7	90.7	0.842	77.2	96.5	0.483	44.6	55.8	0.344	25.2	53.0	0.416	36.3	47.8	0.554	50.9	62.2
	RLogic	-	-	-	-	-	-	0.47	44.3	53.7	0.31	20.3	50.1	-	-	-	0.36	25.2	50.4
GNNs	CompGCN	0.933	88.3	99.1	0.927	86.7	99.4	0.479	44.3	54.6	0.355	26.4	53.5	0.463	38.3	59.6	0.421	39.2	57.7
	NBFNet	0.989	98.8	98.9	0.948	92.0	99.5	0.551	<u>49.7</u>	<u>66.6</u>	0.415	32.1	59.9	0.525	45.1	63.9	0.550	47.9	68.6
	RED-GNN	0.992	98.8	99. 7	<u>0.964</u>	<u>94.6</u>	99.0	0.533	48.5	62.4	0.374	28.3	55.8	<u>0.543</u>	<u>47.6</u>	<u>65.1</u>	0.559	48.3	68.9
	AdaProp	0.988	98.6	99.0	0.969	95.6	99.5	0.562	49.9	67.1	0.417	33.1	<u>58.5</u>	0.554	49.3	65.5	0.573	51.0	68.5

• Evaluation with inductive settings

			WN	18RR			FB15	ik237		NELL-995				
metric	methods	V1	V2	V3	V4	V1	V2	V3	V4	V1	V2	V3	V4	
	RuleN	73.0	69.4	40.7	68.1	44.6	59.9	60.0	60.5	76.0	51.4	53.1	48.4	
	Neural LP	77.2	74.9	47.6	70.6	46.8	58.6	57.1	59.3	87.1	56.4	57.6	53.9	
	DRUM	77.7	74.7	47.7	70.2	47.4	59.5	57.1	59.3	<u>87.3</u>	54.0	57.7	53.1	
Hit@10 (%)	GraIL	76.0	77.6	40.9	68.7	42.9	42.4	42.4	38.9	56.5	49.6	51.8	50.6	
	CoMPILE	74.7	74.3	40.6	67.0	43.9	45.7	44.9	35.8	57.5	44.6	51.5	42.1	
	NBFNet	82.7	<u>79.9</u>	<u>56.3</u>	70.2	<u>51.7</u>	<u>63.9</u>	58.8	55.9	79.5	<u>63.5</u>	60.6	<u>59.1</u>	
	RED-GNN	79.9	78.0	52.4	<u>72.1</u>	48.3	62.9	60.3	<u>62.1</u>	86.6	60.1	59.4	55.6	
	AdaProp	86.6	83.6	62.6	75.5	55.1	65.9	63.7	63.8	88.6	65.2	61.8	60.7	

□ Heatmaps of relation type ratios in the propagation path

D Exemplar propagation paths on FB15k237-v1 dataset

connection-preserving