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=> Process evaluation results on AR-Bench datasets
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. LLMs struggle to consistently propose good questions
The unreliable verifier limits the performance of ToT
The reliability of verifiers varies, strong in GN but
weaker in SP

4. Underperforming LLMs ask low-quality questions

5. Larger models can retrieve more useful information
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(a) Detective Cases (DC) (b) Situation Puzzles (SP) (c) Guessing Numbers (GN)

whn =

The core requirements of Active Reasoning
* Target important missing details and form questions
* Collect information from questions and derive the solution

Experiments
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From Laurens Van der Maaten's keynote at CVPR 2025:

« System 3 is thinking together. Interactive and
collaborative. Finds others with complementary skills or
experience to solve more complex tasks

* AR depicts the interactive and collaborative ability (the key
to System 3)
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Figure 4: The evaluation results of outcome scores for Llama-3.1-8B and Llama-3.1-70B on the AR-Bench across various
methods. The outcome scores represent accuracy, F1 score, and exact match rate for tasks DC, SP, and GN, respectively.
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Figure 5: Reasoning accuracy on the AR-Bench with differ- Figure 6: Compare advanced Figure 7: Compare zero-shot
ent language models. We set zero-shot as the default setting. methods using Llama-3.1-8B. GPT-40 with human eval.

¢ Key Observations:

1. AR-Bench demonstrates challenges across all models and methods

2. Existing active reasoning methods fail in AR-Bench

3. Human baselines significantly surpass cutting-edge language models

70B model. The results include a comparison between the final outcomes and those in Fig. 5, and the process scores.

DC = SP m GN DC = SP ®m GN
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(a) Trajectories generated by Llama-3.1-70B (b) Trajectories generated by Llama-3.1-405B

Figure 11: The outcome scores of reasoning given the generated question-answering traces. We employ various models
to make predictions in the traces generated by Llama-3.1-70B (a) and Llama-3.1-405B (b) to evaluate to what extent the
question-answering history affects these models to draw the final conclusion.

< Key Observations:

1. Larger models demonstrate robustness to insufficient
information to derive more correct conclusions

2. More question-asking turns cannot directly indicate
more accurate conclusions in AR-Bench
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